子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究

包阔 张先锋 谈梦婷 陈贝贝 魏海洋

包阔, 张先锋, 谈梦婷, 陈贝贝, 魏海洋. 子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究[J]. 爆炸与冲击, 2019, 39(12): 123102. doi: 10.11883/bzycj-2018-0462
引用本文: 包阔, 张先锋, 谈梦婷, 陈贝贝, 魏海洋. 子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究[J]. 爆炸与冲击, 2019, 39(12): 123102. doi: 10.11883/bzycj-2018-0462
BAO Kuo, ZHANG Xianfeng, TAN Mengting, CHEN Beibei, WEI Haiyang. Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet[J]. Explosion And Shock Waves, 2019, 39(12): 123102. doi: 10.11883/bzycj-2018-0462
Citation: BAO Kuo, ZHANG Xianfeng, TAN Mengting, CHEN Beibei, WEI Haiyang. Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet[J]. Explosion And Shock Waves, 2019, 39(12): 123102. doi: 10.11883/bzycj-2018-0462

子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究

doi: 10.11883/bzycj-2018-0462
基金项目: 国家自然科学基金(11772159);轻武器终点杀伤技术国防科技重点实验室基金(6142060101162606001);高性能陶瓷和超微结构国家重点实验室开放基金(SKL201602SIC)
详细信息
    作者简介:

    包 阔(1994- ),男,博士研究生,183402539@qq.com

    通讯作者:

    张先锋(1978- ),男,博士,教授,lynx@njust.edu.cn

  • 中图分类号: O382; TJ410

Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet

  • 摘要: 碳化硼陶瓷具有高硬度、低密度的特性,在装甲防护领域有广泛的应用前景,碳化硼陶瓷及其复合靶的冲击破坏特性是装甲防护领域近期的焦点问题之一。本文中基于剩余穿深方法,开展了碳化硼及复合靶抗12.7 mm穿甲燃烧弹侵彻的试验研究。建立了碳化硼陶瓷复合靶抗弹数值模拟模型,根据试验研究结果验证数值模拟方法的可靠性。在此基础上,开展了12.7 mm穿甲燃烧弹侵彻碳化硼陶瓷复合靶的数值模拟研究,重点研究了靶板配置、背板厚度及种类对复合靶抗弹性能的影响。结果表明:靶板面密度相同的情况下,随着陶瓷厚度的增大,陶瓷复合靶的抗弹性能提高;陶瓷厚度相同时,陶瓷复合靶抗弹性能提升的效率随其面密度的增大而下降。陶瓷/PE (polyethylene)结构适合抵抗低速弹体的侵彻破坏,陶瓷/铝结构适合抵抗高速弹体的侵彻破坏。
  • 图  1  侵彻试验布置

    Figure  1.  Layout of penetration experiment

    图  2  12.7 mm口径穿甲燃烧弹

    Figure  2.  A 12.7 mm armor-piercing explosive incendiary bullet

    图  3  碳化硼陶瓷复合靶结构

    Figure  3.  Structures of B4C composite targets

    图  4  12.7 mm口径穿甲燃烧弹侵彻铝靶试验结果

    Figure  4.  Experimental results for penetration of an aluminum target by a 12.7 mm armor-piercing explosive incendiary bullet

    图  5  12.7 mm口径穿甲燃烧弹侵彻陶瓷/铝半无限靶试验结果

    Figure  5.  Penetration of a B4C/aluminum target by a 12.7 mm armor-piercing explosive incendiary bullet

    图  6  12.7 mm口径穿甲燃烧弹侵彻陶瓷/铝有限厚靶试验结果

    Figure  6.  Experimental results for penetration of a B4C/aluminum target by a 12.7 mm armor-piercing explosive incendiary bullet

    图  7  12.7 mm穿燃弹侵彻陶瓷/铝半无限靶数值模拟模型

    Figure  7.  The numerical simulation model for a 12.7 mm armor-piercing explosive incendiary bullet penetrating into a semi-infinite ceramic/aluminum composite target

    图  8  12.7 mm穿燃弹体数值模拟模型

    Figure  8.  The numerical simulation model for the 12.7 mm armor-piercing explosive incendiary bullet

    图  9  12.7 mm穿燃弹侵彻陶瓷/铝半无限靶损伤演化过程

    Figure  9.  Damage evolution of a 12.7 mm armor-piercing explosive incendiary bullet penetrating into a semi-infinite ceramic/aluminum composite target

    图  10  12.7 mm穿燃弹侵彻陶瓷/铝有限厚靶损伤演化过程

    Figure  10.  Damage evolution during penetraion of a 12.7 mm armor-piercing explosive incendiary bullet into a finite ceramic/aluminum composite target

    图  11  12.7 mm穿燃弹侵彻不同靶体的试验与数值模拟结果的对比

    Figure  11.  Comparison between experimental and numerical simulation results for 2.7 mm armor-piercing explosive incendiary bullets penetrating into different targets

    图  12  弹道极限速度与靶板面密度的关系

    Figure  12.  Relation between ballistic limit and areal density of target

    图  13  弹丸侵彻面密度为40、120 kg/m2的复合靶过程中的能量-时间历程曲线

    Figure  13.  Energy-time curves during penetration of ceramic composite targets with the areal densities of 40 kg/m2 and 120 kg/m2 by bullets

    图  14  陶瓷/铝及陶瓷/PE复合靶k

    Figure  14.  k values of ceramic/aluminum and ceramic/PE composite targets

    图  15  不同陶瓷厚度复合靶的弹道极限速度

    Figure  15.  Ballistic limit velocities of composite targets with different ceramic thickness

    图  16  薄背板下的拉伸破坏和厚背板下的拉伸-侵彻破坏

    Figure  16.  Tension failure in thin back layer and tension-penetration failure in thick back layer

    表  1  12.7 mm 口径穿甲燃烧弹侵彻铝靶的试验数据

    Table  1.   Experimental data for 12.7 mm armor-piercing explosive incendiary bullets penetrating into aluminum targets

    弹丸速度/(m·s−1)侵彻深度/mm侵彻深度平均值/mm
    83478
    8267375.3
    84575
    下载: 导出CSV

    表  2  12.7 mm 穿燃弹侵彻陶瓷复合靶的速度和深度

    Table  2.   Velocities and depths of 12.7 mm armor-piercing explosive incendiary bullets penetrating ceramic composite targets

    靶体速度/(m·s−1)铝背板侵彻深度/mm防护系数
    碳化硼陶瓷半无限复合靶836 65.3
    820 55.7
    120 kg/m2面密度复合靶831242.3
    823182.9
    下载: 导出CSV

    表  3  12.7 mm 穿燃弹与后效铝靶材料本构参数

    Table  3.   Parameters of the JC constitutive model for the 12.7 mm armor-piercing explosive incendiary bullet and the witness target

    材料ρ/(kg·m−3)A/MPaB/MPanCm
    2A12铝合金2 750 3304450.7090.0121.0
    F117 920 3002750.15 0.0221.09
    T12A7 8501 5404770.16 01
    下载: 导出CSV

    表  4  碳化硼陶瓷材料本构参数

    Table  4.   Parameters of the constitutive model for B4C

    ρ/(kg·m−3)K1/GPaK2/GPaK3/GPaT/GPaAN
    2 510233−5932 8000.260.9270.67
    CBM$\sigma _{{\rm{f}},{\rm{max}}}^*$D1D2β
    0.0050.70.850.50.0010.51.0
    下载: 导出CSV
  • [1] WILKINS M L, LANDINGHAM R L, HONODEL C A. Light-armor program. Fifth progress report: UCR L-50980 [R]. USA: Lawrence Livermore national Laboratory, 1971.
    [2] JOHNSON G R, HOLMQUIST T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures [J]. Journal of Applied Physics, 1999, 85(12): 8060–8073. DOI: 10.1063/1.370643.
    [3] HOLMQUIST T J, JOHNSON G R. Response of boron carbide subjected to high-velocity impact [J]. International Journal of Impact Engineering, 2008, 35(8): 742–752. DOI: 10.1016/j.ijimpeng.2007.08.003.
    [4] GRADY D E. Shock-wave strength properties of boron carbide and silicon carbide [J]. Le Journal De Physique IV, 1994, 4(C8): 385–391. DOI: 10.1051/jp4:1994859.
    [5] WESTERLING L, LUNDBERG P, LUNDBERG B. Tungsten long-rod penetration into confined cylinders of boron carbide at and above ordnance velocities [J]. International Journal of Impact Engineering, 2001, 25(7): 703–714. DOI: 10.1016/S0734-743X(00)00072-5.
    [6] ORPHAL D L, FRANZEN R R, CHARTERS A C, et al. Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s [J]. International Journal of Impact Engineering, 1997, 19(1): 15–29. DOI: 10.1016/S0734-743X(96)00004-8.
    [7] WILKINS M L. Second progress report of light amour program: UCRL-50349 [R]. USA: Lawrence Livermore Laboratory Report, 1967.
    [8] WILKINS M L. Third progress report of light amour program: UCRL-50460 [R]. USA: Lawrence Livermore Laboratory Report, 1968.
    [9] 卢君, 陈斌, 曾首义. 7.62 mm口径模拟弹侵彻碳化硼陶瓷复合靶板的数值模拟[C] // 第19届全国结构工程学术会议论文集. 济南, 2010: 116−120.
    [10] 孙炜海, 鞠桂玲, 杨班权. 平头弹丸侵彻B4C陶瓷/金属复合靶板的数值模拟 [J]. 装甲兵工程学院学报, 2014, 28(1): 45–48. DOI: 10.11732/j.issn.1672-1497.2014.01.010.

    SUN Weihai, JU Guiling, YANG Banquan. Numerical simulation on penetration of B4C ceramic/metal composite targets struck by flat-ended projectiles [J]. Journal of Academy of Armored Force Engineering, 2014, 28(1): 45–48. DOI: 10.11732/j.issn.1672-1497.2014.01.010.
    [11] ANDERSON Jr C E, BURKINS M, WALKER J, et al. Time-resolved penetration of B4C tiles by the APM2 bullet [J]. Computer Modeling in Engineering and Sciences, 2005, 8(2): 91–104. DOI: 10.1525/ae.1983.10.2.02a00140.
    [12] GOOCH W A, BURKINS M S, HAUVER G, et al. Dynamic X-ray imaging of the penetration of boron carbide [J]. Le Journal De Physique IV, 2000, 10: 583–588.
    [13] STRASSBURGER E, BAUER S. Analysis of the interaction of projectiles with ceramic targets by means of flash X-ray cinematography and optical methods [C] // Proceedings of the 41st International Conference on Advanced Ceramics and Composites. Hoboken, NJ, USA: John Wiley & Sons Inc, 2018: 205−219. DOI: 10.1002/9781119474678.ch20.
    [14] JOHNSON G R, COOK W H, JOHNSON G, et al. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures [C] // Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 541−547.
    [15] 侯二永. 陶瓷间隙靶抗12.7 mm穿甲燃烧弹机理及性能研究[D]. 长沙: 国防科学技术大学, 2008: 16−17. DOI: 10.7666/d.y1523731.
    [16] 张伟, 魏刚, 肖新科. 2A12铝合金本构关系和失效模型 [J]. 兵工学报, 2013, 34(3): 276–282. DOI: 10.3969/j.issn.1000-1093.2013.03.004.

    ZHANG Wei, WEI Gang, XIAO Xinke. Constitutive relation and fracture criterion of 2A12 aluminum alloy [J]. Acta Armamentarii, 2013, 34(3): 276–282. DOI: 10.3969/j.issn.1000-1093.2013.03.004.
    [17] 李春雷. 2A12铝合金本构关系实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2006: 42.

    LI Chunlei. Experimental investigation into the constitutive relationship of 2A12 aluminum alloy[D]. Harbin: Harbin Institute of Technology, 2006: 42.
    [18] 唐恩凌, 施晓涵, 王猛, 等. 高速碰撞下圆柱壳自由梁的穿孔特性 [J]. 爆炸与冲击, 2016, 36(1): 121–128. DOI: 10.11883/1001-1455(2016)01-0121-08.

    TANG Enling, SHI Xiaohan, WANG Meng, et al. Perforation characteristics of cylindrical shell free beam under high-speed impact [J]. Explosion and Shock Waves, 2016, 36(1): 121–128. DOI: 10.11883/1001-1455(2016)01-0121-08.
    [19] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [C] // AIP Conference Proceedings, 1994, 309(1). DOI: 10.1063/1.46199.
    [20] 谭华. 实验冲击波物理[M]. 北京: 国防工业出版社, 2018: 78−87.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  5367
  • HTML全文浏览量:  1670
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-19
  • 修回日期:  2019-03-22
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回