冲击波的小波数值计算方法

许志宇 谭永华 李小明

许志宇, 谭永华, 李小明. 冲击波的小波数值计算方法[J]. 爆炸与冲击, 2020, 40(1): 014201. doi: 10.11883/bzycj-2018-0467
引用本文: 许志宇, 谭永华, 李小明. 冲击波的小波数值计算方法[J]. 爆炸与冲击, 2020, 40(1): 014201. doi: 10.11883/bzycj-2018-0467
XU Zhiyu, TAN Yonghua, LI Xiaoming. Numerical computation of shock wave using wavelet methods[J]. Explosion And Shock Waves, 2020, 40(1): 014201. doi: 10.11883/bzycj-2018-0467
Citation: XU Zhiyu, TAN Yonghua, LI Xiaoming. Numerical computation of shock wave using wavelet methods[J]. Explosion And Shock Waves, 2020, 40(1): 014201. doi: 10.11883/bzycj-2018-0467

冲击波的小波数值计算方法

doi: 10.11883/bzycj-2018-0467
详细信息
    作者简介:

    许志宇(1989- ),男,博士研究生,xuzhiyu611@163.com

    通讯作者:

    谭永华(1963- ),男,博士,研究员,tanyhcasc@163.com

  • 中图分类号: O354.5

Numerical computation of shock wave using wavelet methods

  • 摘要: 基于自适应小波配点法和人工黏性技术,构造出一种简单稳定的冲击波数值计算方法。采用小波阈值滤波,生成适应流场分布的多尺度自适应网格,并利用密度场最细尺度的小波系数构造幂函数形式的冲击波定位函数,用以判断冲击波位置。联合人工黏性与冲击波定位函数,自动根据流场梯度严格控制人工黏性的大小和分布。对强/弱冲击波管问题进行计算,结果表明,该方法能够准确捕捉冲击波和有效抑制数值振荡,并且使用简单、分辨率高、计算量小。
  • 图  1  冲击波与对应的小波系数和定位函数

    Figure  1.  Shock and the corresponding wavelet coefficients and shock locator functions

    图  2  弱冲击波t=0.24时的气体密度分布

    Figure  2.  Density distribution of weak shock at t=0.24

    图  3  计算用配点分布,t=0.24

    Figure  3.  Spatial distribution of used collocations, t=0.24

    图  4  冲击波波阵面位置随时间变化

    Figure  4.  Positions of the shock front with time

    图  5  强冲击波t=0.05时的气体密度分布

    Figure  5.  Density distribution of strong shock at t=0.05

    图  6  自适应小波配点法相对迎风、ENO、WENO格式的计算时间

    Figure  6.  Relative computational time costs of AWCM to Up-wind, ENO and WENO schemes

    图  7  J=12时三种格式密度分布对比

    Figure  7.  Spatial distributions of density through three schemes with J=12

    表  1  弱冲击波管计算参数

    Table  1.   Computational parameters for weak shock tube

    JNαε/10−4
    9 5131.51.0
    101 0251.51.0
    112 0491.51.0
    下载: 导出CSV

    表  2  强冲击波管计算参数

    Table  2.   Computational parameters for strong shock tube

    JNαε/10−5
    101 0250.31.0
    112 0490.31.0
    124 0970.31.0
    下载: 导出CSV
  • [1] REGELE J D, VASILYEV O V. An adaptive wavelet-collocation method for shock computations [J]. International Journal of Computational Fluid Dynamics, 2009, 23(7): 503–518. DOI: 10.1080/10618560903117105.
    [2] CAI W, WANG J Z. Adaptive multiresolution collocation methods for initial-boundary value problems of nonlinear PDEs [J]. SIAM Journal on Numerical Analysis, 1996, 33(3): 937–970. DOI: 10.1137/0733047.
    [3] 唐玲艳. 双曲型方程数值解的小波方法研究[D]. 长沙: 国防科学技术大学, 2007: 43−84.
    [4] 李慧敏. 小波分析在双曲型守恒律方程数值解中的应用研究[D]. 南京: 南京航空航天大学, 2002: 6−28.

    LI H M. Application of wavelet analysis to solving hyperbolic conservation laws [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2002: 6−28.
    [5] COHEN A, KABER S M, MÜLLER S, et al. Fully adaptive multiresolution finite volume schemes for conservation laws [J]. Mathematics of Computation, 2003, 72(241): 183–226. DOI: 10.1090/s0025-5718-01-01391-6.
    [6] 王一博, 唐建候, 杨慧珠. 自适应小波方法求解波传问题 [J]. 石油地球物理勘探, 2005, 40(6): 628–631. DOI: 10.3321/j.issn:1000-7210.2005.06.004.

    WANG Y B, TANG J H, YANG H Z. Using adaptive wavelet method to resolve issue of wave propagation [J]. Oil Geophysical Prospecting, 2005, 40(6): 628–631. DOI: 10.3321/j.issn:1000-7210.2005.06.004.
    [7] VASILYEV O V, BOWMAN C. Second-generation wavelet collocation method for the solution of partial differential equations [J]. Journal of Computational Physics, 2000, 165(2): 660–693. DOI: 10.1006/jcph.2000.6638.
    [8] VASILYEV O V. Solving multi-dimensional evolution problems with localized structures using second generation wavelets [J]. International Journal of Computational Fluid Dynamics, 2003, 17(2): 151–168. DOI: 10.1080/1061856021000011152.
    [9] HARTEN A. Adaptive multiresolution schemes for shock computations [J]. Journal of Computational Physics, 1994, 115(2): 319–338. DOI: 10.1006/jcph.1994.1199.
    [10] BÜRGER R, KOZAKEVICIUS A. Adaptive multiresolution WENO schemes for multi-species kinematic flow models [J]. Journal of Computational Physics, 2007, 224(2): 1190–1222. DOI: 10.1016/j.jcp.2006.11.010.
    [11] 王昱. 偏微分方程的小波求解法及其在燃烧计算中的初步应用[D]. 长沙: 国防科学技术大学, 2008: 81−128.
    [12] 孙阳, 吴勃英, 冯国泰. 利用多小波自适应格式求解流体力学方程 [J]. 力学学报, 2008, 40(6): 744–751. DOI: 10.3321/j.issn:0459-1879.2008.06.004.

    SUN Y, WU B Y, FENG G T. The AUSMPW scheme based on adaptive algorithm of interpolating multiwavelets applied to solve Euler equations [J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 744–751. DOI: 10.3321/j.issn:0459-1879.2008.06.004.
    [13] 赵勇. 小波数值方法在船舶流体力学中的若干应用[D]. 大连: 大连理工大学, 2011: 29−56.

    ZHAO Y. Wavelet numerical method with some applications to marine hydrodynamics [D]. Dalian: Dalian University of Technology, 2011: 29−56.
    [14] 赵勇, 宗智, 王天霖. 一种抑制冲击波计算中数值震荡现象的双重小波数值方法 [J]. 应用数学和力学, 2014, 35(6): 620–629. DOI: 10.3879/j.issn.1000-0887.2014.06.004.

    ZHAO Y, ZONG Z, WANG T L. A dual wavelet shrinkage procedure for suppressing numerical oscillation in shock wave calculation [J]. Applied Mathematics and Mechanics, 2014, 35(6): 620–629. DOI: 10.3879/j.issn.1000-0887.2014.06.004.
    [15] REGELE J D, KASSOY D R, VASILYEV O V. Numerical modeling of acoustic timescale detonation initiation: AIAA 2008- 1037 [R]. USA: NASA, 2008. DOI: 10.1080/13647830.2011.647090.
    [16] REGELE J, RABINOVITCH J, COLONIUS T, et al. Numerical modeling and analysis of early shock wave interactions with a dense particle cloud: AIAA 2012-3161 [R]. USA: NASA, 2012. DOI: 10.2514/6.2012-3161.
    [17] REGELE J D. Purely gasdynamic multidimentioanal indirect detonation initiation using localized acoustic timescale power deposition: AIAA 2013-1172 [R]. USA: NASA, 2013. DOI: 10.2514/6.2013-1172.
    [18] KASSOY D, REGELE J, VASILYEV O. Detonation initiation on the microsecond time scale: one and two dimensional results obtained from adaptive wavelet-collocation numerical methods: AIAA 2007-986 [R]. USA: NASA, 2007. DOI: 10.1080/13647830.2014.971058.
    [19] SCHNEIDER K, VASILYEV O V. Wavelet methods in computational fluid dynamics [J]. Annual Review of Fluid Mechanics, 2010, 42(1): 473–503. DOI: 10.1146/annurev-fluid-121108-145637.
    [20] LANEY C B. Computational gasdynamics [M]. Cambridge: Cambridge University Press, 1998: 249−299. DOI: 10.1017/cbo9780511605604
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  5852
  • HTML全文浏览量:  1727
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-20
  • 修回日期:  2019-01-22
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回