钢骨混凝土构件抗冲击性能试验研究

朱翔 刘宏 陆新征 王蕊

朱翔, 刘宏, 陆新征, 王蕊. 钢骨混凝土构件抗冲击性能试验研究[J]. 爆炸与冲击, 2019, 39(11): 115102. doi: 10.11883/bzycj-2018-0500
引用本文: 朱翔, 刘宏, 陆新征, 王蕊. 钢骨混凝土构件抗冲击性能试验研究[J]. 爆炸与冲击, 2019, 39(11): 115102. doi: 10.11883/bzycj-2018-0500
ZHU Xiang, LIU Hong, LU Xinzheng, WANG Rui. Experimental study on impact resistance of steel reinforced concrete members[J]. Explosion And Shock Waves, 2019, 39(11): 115102. doi: 10.11883/bzycj-2018-0500
Citation: ZHU Xiang, LIU Hong, LU Xinzheng, WANG Rui. Experimental study on impact resistance of steel reinforced concrete members[J]. Explosion And Shock Waves, 2019, 39(11): 115102. doi: 10.11883/bzycj-2018-0500

钢骨混凝土构件抗冲击性能试验研究

doi: 10.11883/bzycj-2018-0500
基金项目: 东南大学混凝土及预应力混凝土结构教育部重点实验室开放课题(CPCSME2016-11);国家自然科学基金(51578274);山西省交通科研计划(2016-1-7)
详细信息
    作者简介:

    朱 翔(1987- ),男,博士,副教授,zhuxiang@sxu.edu.cn

  • 中图分类号: O383; TU398.9

Experimental study on impact resistance of steel reinforced concrete members

  • 摘要: 利用超重型落锤试验机对钢骨混凝土构件进行了侧向冲击试验,研究了落锤冲击钢骨混凝土构件的冲击全过程和最终的破坏形态;分析了钢骨混凝土构件冲击力、位移和轴力时程曲线的特性;对比了不同冲击速度、冲击能量、轴压和边界条件等因素对钢骨混凝土构件的动力响应的影响。结果表明:钢骨混凝土构件在落锤冲击作用下外侧混凝土破坏严重,且冲击能量越大,外侧混凝土越易出现剪切破坏,但内部钢筋和钢骨只发生了一定的弯曲变形,表明钢骨混凝土构件抗冲击性能整体良好。本次试验参数范围内,钢骨混凝土构件的冲击力和跨中位移随冲击速度增加而增大;轴压力增大使钢骨混凝土构件的冲力峰值增大,冲击持时和跨中位移减小;相对于固简支和两端简支的边界条件,两端固支的边界对于钢骨混凝土构件的抗冲击性能提升最好。
  • 图  1  钢骨混凝土试件设计详图(单位:mm)

    Figure  1.  Design details of SRC specimen (unit: mm)

    图  2  超重型落锤试验装置

    Figure  2.  Super heavy drop weight test equipment

    图  3  落锤示意图(单位:mm)

    Figure  3.  Illustration of drop weight (unit: mm)

    图  4  试件SRC6冲击全过程

    Figure  4.  Impact process for SRC6

    图  5  SRC6构件冲击力时程曲线

    Figure  5.  Time history curves of impact load of SRC6 specimen

    图  6  SRC构件跨中位移时程曲线

    Figure  6.  Time history curves of mid-span displacement of SRC specimen at different impact velocities and under different boundary conditions

    图  7  轴压时程曲线

    Figure  7.  Time history curves of axial pressure

    图  8  不同冲击速度下构件破坏形态

    Figure  8.  Failure models of SRC at different drop hammer impact velocities

    图  9  不同轴压力下落锤冲击后构件破坏形态

    Figure  9.  Failure models of SRC under different axial load by drop hammer

    图  10  不同边界条件下落锤冲击后构件破坏形态

    Figure  10.  Failure models of SRC under different boundary conditions by drop weight

    图  11  冲击速度的影响

    Figure  11.  Effect of impact velocity

    图  12  轴压的影响

    Figure  12.  Effect of axial pressure

    图  13  边界条件的影响

    Figure  13.  Effect of boundary conditions

    表  1  钢骨混凝土试件信息及试验结果

    Table  1.   SRC specimen information and test results

    试件编号边界条件m/kgN/kNv/(m·s−1Fmax/kNFstab/kNTd/ms$\varDelta _{\rm{cmax}} /{\rm{mm}}$$\varDelta _{\rm{cstab}} /{\rm{mm}}$$\varDelta _{\rm{rstab}} /{\rm{mm}}$
    SRC4两端固支1 158.7340.45.4210 932.022 524.7710.4013.675.005.36
    SRC5两端固支1 158.7340.47.6712 489.503 780.5821.9727.4315.4313.02
    SRC6两端固支1 158.7340.49.3914 936.493 977.9331.9334.1820.6520.10
    SRC7两端固支1 158.7680.85.4214.23 3.94 5.00
    SRC8两端固支1 158.7680.87.6712 600.273 429.3319.9325.3513.0012.76
    SRC9两端固支1 158.7680.89.3915 426.774 259.5225.9332.5519.5021.00
    SRC10固简支1 158.709.3912 880.981 703.5743.9346.1330.0022.28
    SRC11两端简支1 158.709.3912 281.951 648.8447.9359.0042.5040.96
     注:m为冲击质量;N为所施加的轴力;v为冲击速度;Fmax为冲击力峰值;Fstab为冲击力平台值;Td为冲击力持续时间;$\varDelta _{\rm{cmax}} $为高速摄影测得试件跨中位移最大值;$\varDelta _{\rm{cstab}} $为高速摄影测得试件跨中残余位移值;$\varDelta _{\rm{rstab}} $为高度尺测得试件跨中残余位移值。
    下载: 导出CSV

    表  2  钢材的力学性能

    Table  2.   Mechanical properties of the steel

    钢材类型屈服强度/MPa极限强度/MPa弹性模量/GPa伸长率/%
    6 mm 钢板427.0625.321022.2
    9 mm 钢板358.2529.420323.0
    12 mm 纵筋362.3543.521223.2
    8 mm 箍筋370.2525.721620.8
    下载: 导出CSV

    表  3  落锤具体尺寸

    Table  3.   Specific size of drop weight

    名称形状底面直径/mm底面尺寸/mm高度/mm质量/kg
    配重圆柱体490486 719.43
    锤头顶部圆柱体500150 231.20
    过渡部位长方体300×300 50 35.33
    传感器长方体200×200100 31.40
    锤头底部长方体300×300200 141.30
    总质量1 158.70
    下载: 导出CSV
  • [1] 叶列平, 方鄂华. 钢骨混凝土构件的受力性能研究综述 [J]. 土木工程学报, 2000, 33(5): 1–12. DOI: 10.15951/j.tmgcxb.2000.05.001.

    YE Lieping, FANG Ehua. State of the art of study behaviors of steel reinforced concrete structure [J]. China Civil Engineering Journal, 2000, 33(5): 1–12. DOI: 10.15951/j.tmgcxb.2000.05.001.
    [2] 叶列平, 方鄂华, 周正海, 等. 钢骨混凝土柱的轴压力限值 [J]. 建筑结构学报, 1997, 18(5): 43–50. DOI: 10.14006/j.jz.jgxb.1997.05.005.

    YE Lieping, FANG Ehua, ZHOU Zhenghai, et al. Axial load limit for steel reinforced concrete columns [J]. Journal of Building Structures, 1997, 18(5): 43–50. DOI: 10.14006/j.jz.jgxb.1997.05.005.
    [3] 周颖, 缪驰, 闫峰, 等. 钢骨混凝土连梁联肢剪力墙抗震性能试验研究及有限元分析 [J]. 建筑结构学报, 2015, 36(3): 36–45. DOI: 10.14006/j.jzjgxb.2015.03.005.

    ZHOU Ying, MIAO Chi, YAN Feng, et al. Experimental study and FEA of seismic performance of coupled shear walls with steel reinforced concrete coupling beams [J]. Journal of Building Structures, 2015, 36(3): 36–45. DOI: 10.14006/j.jzjgxb.2015.03.005.
    [4] 蒋晶. 异形钢骨混凝土柱侧向抗冲击性能研究[D]. 沈阳: 沈阳建筑大学, 2014.

    JIANG Jing. Research on resistance to lateral impact properties of the special-shaped steel reinforced concrete columns [D]. Shenyang: Shenyang Jianzhu University, 2014.
    [5] 张玲. 钢骨混凝土桥墩静动响应研究[D]. 南京: 南京工业大学, 2015.

    ZHANG Ling. Research on static and dynamic response of steel reinforced concrete bridge piers [D]. Nanjing: Nanjing Tech University, 2015.
    [6] 朱翔, 曹瑞东, 康婷婷, 等. 侧向冲击荷载作用下钢骨混凝土柱抗冲击性能研究 [J]. 防灾减灾工程学报, 2017(04): 161–170. DOI: 10.13409/j.cnki.jdpme.2017.04.023.

    ZHU Xiang, CAO Ruidong, KANG Tingting, et al. Study on the impact resistance of steel reinforced concrete columns under lateral impact loads [J]. Journal of Disaster Prevention and Mitigation Engineering, 2017(04): 161–170. DOI: 10.13409/j.cnki.jdpme.2017.04.023.
    [7] PAN J, FANG H, XU M C, et al. Study on the performance of energy absorption structure of bridge piers against vehicle collision [J]. Thin-Walled Structures, 2018, 130: 85–100. DOI: 10.1016/j.tws.2018.05.008.
    [8] 朱翔, 陆新征, 杜永峰, 等. 列车脱轨后运行姿态模拟 [J]. 振动与冲击, 2014, 33(23): 126–130. DOI: 10.13465/j.cnki.jvs.2014.23.026.

    ZHU Xiang, LU Xinzheng, DU Yongfeng, et al. Simulation for running attitude of a train after derailment [J]. Journal of Vibration and Shock, 2014, 33(23): 126–130. DOI: 10.13465/j.cnki.jvs.2014.23.026.
    [9] GHOLIPOUR G, ZHANG C, LI M. Effects of soil–pile interaction on the response of bridge pier to barge collision using energy distribution method [J]. Structure and Infrastructure Engineering, 2018, 14(11): 1–15. DOI: 10.1080/15732479.2018.1450427.
    [10] YOUSUF M, UY B, TAO Z, et al. Transverse impact resistance of hollow and concrete filled stainless steel columns [J]. Journal of Constructional Steel Research, 2013, 82: 177–189. DOI: 10.1016/j.jcsr.2013.01.005.
    [11] HAN L H, HOU C C, ZHAO X L, et al. Behaviour of high-strength concrete filled steel tubes under transverse impact loading [J]. Journal of Constructional Steel Research, 2014, 92: 25–39. DOI: 10.1016/j.jcsr.2013.09.003.
    [12] 朱翔, 陆新征, 杜永峰, 等. 外包钢管加固RC柱抗冲击试验研究 [J]. 工程力学, 2016, 33(6): 23–33. DOI: 10.6052/j.issn.1000-4750.2014.11.0991.

    ZHU Xiang, LU Xinzheng, DU Yongfeng, et al. Experimental study on impact resistance of RC columns strengthened with steel jacket [J]. Engineering Mechanics, 2016, 33(6): 23–33. DOI: 10.6052/j.issn.1000-4750.2014.11.0991.
    [13] 朱翔, 陆新征, 杜永峰, 等. 新型复合柱抗冲击试验研究及有限元分析 [J]. 工程力学, 2016, 33(8): 158–166. DOI: 10.6052/j.issn.1000-4750.2015.03.0153.

    ZHU Xiang, LU Xinzheng, DU Yongfeng, et al. Experimental study and finite element analysis of impact resistance of novel composite columns [J]. Engineering Mechanics, 2016, 33(8): 158–166. DOI: 10.6052/j.issn.1000-4750.2015.03.0153.
    [14] 张南, 王慧, 陈旭, 等. 钢骨混凝土桥墩抗撞击性能试验研究 [J]. 中国公路学报, 2017, 30(11): 99–107. DOI: 10.19721/j.cnki.1001-7372.2017.11.010.

    ZHANG Nan, WANG Hui, CHEN Xu, et al. Experimental research on impact performance of steel reinforced concrete bridge piers [J]. China Journal of Highway and Transport, 2017, 30(11): 99–107. DOI: 10.19721/j.cnki.1001-7372.2017.11.010.
    [15] 陈佳佳, 张南, 巫业双, 等. 内置钢骨形式对混凝土桥墩撞击性能影响研究 [J]. 防灾减灾工程学报, 2018, 38(1): 72–80. DOI: 10.13409/j.cnki.jdpme.2018.01.010.

    CHEN Jiajia, ZHANG Nan, WU Yeshuang, et al. Research on influence of embedded steel skeleton form on impact performance of concrete piers [J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(1): 72–80. DOI: 10.13409/j.cnki.jdpme.2018.01.010.
    [16] 朱翔. 脱轨列车撞击站房结构的非线性响应及连续倒塌研究[D]. 兰州: 兰州理工大学, 2015.

    ZHU Xiang. Nonlinear response and progressive collapse research of railway station due to the impact of derailed trains [D]. Lanzhou: Lanzhou University of Technology, 2015.
    [17] 胡昌明, 韩林海. 圆形钢管混凝土叠合构件抗冲击性能试验研究 [J]. 土木工程学报, 2016(10): 11–17. DOI: 10.15951/j.tmgcxb.2016.10.004.

    HU Changming, HAN Linhai. Experimental behavior of circular concrete-encased concrete-filled steel tubes under lateral impact [J]. China Civil Engineering Journal, 2016(10): 11–17. DOI: 10.15951/j.tmgcxb.2016.10.004.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  5741
  • HTML全文浏览量:  1540
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-17
  • 修回日期:  2019-04-11
  • 网络出版日期:  2019-10-25
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回