Analysis of test data of underground nuclear explosions and calculation of irreversible deformation range
-
摘要: 地下核试验瞬间释放的巨大能量引起地壳能量的连锁反应,产生诱发地震等地球物理现象。本文对20世纪前苏联与美国进行的地下核试验数据进行整理与归纳,给出地下核爆炸试验诱发工程地震的范围以及激活岩块大小等。根据实测数据,指出地下核爆炸诱发工程性地震的力学本质,利用理论公式计算了地下核爆炸产生不可逆位移的临界能量因子范围,为相关研究提供理论基础和场地效应试验数据。Abstract: The huge energy released instantaneously in underground nuclear tests leads to a chain reaction of crustal energy, and results in geophysical phenomena such as induced earthquakes. This paper sorts out and sums up the underground nuclear test data of the Soviet Union and the United States conducted in the 20th century, including the range of engineering earthquakes induced by underground nuclear tests and the size of activating rock blocks. By judging the measured data, the mechanical nature of the engineering earthquake induced by underground nuclear explosion is pointed out and the range of the critical energy factor of irreversible displacement induced by underground nuclear explosion is calculated using the theoretical formula, thereby providing a theoretical basis and site effect test data for relevant researches.
-
表 1 爆炸规模与最大断层长度
Table 1. Magnitude of explosions and maximum length of active faults
爆炸名称 当量/Mt 震级/mb 最大激活断层长度/km SCOTCH 0.15 5.4 1.54 CHARTREUSE 0.07 5.1 1.66 HALFBEAK 0.30 5.9 3.06 STINGER — 5.3 2.61 LONGSHOT — 6.1 2.25 表 2 不同岩石的A、n取值
Table 2. Values of A and n of different rocks
岩石类型 A n 花岗石 (1.0~1.3)×104 1.6~1.75 盐岩 (0.8~1.0)×104 1.6 凝灰岩 (0.3~0.4×10)4 1.6 表 3 不可逆位移能量因子计算
Table 3. Calculation of irreversible displacement
核爆炸试验 岩性 当量/kt 埋深/m 地表不可逆范围/m 不可逆位移半径/(m·kt−1/3) v kd Greely 沸石凝灰岩 825 1 215 5 200 570 0.16 4.9×10−10 Duryea 流纹岩 65 547 790 239 0.63 8.0×10−9 Boxcar 沸石凝灰岩 1 200 1 160 6 100 584 0.15 4.6×10−10 Benham 凝灰岩 1 100 1 400 13 000 1 260 0.04 1.6×10−10 Milrow 枕熔岩 1 000 1 219 8 000 809 0.09 1.6×10−10 表 4 爆炸激活块体尺寸
Table 4. Dimension of block that became more active due to explosive action during explosions
爆炸当量/kt 距爆心投影点距离/m 激活块体尺寸/m 爆炸当量/kt 距爆心投影点距离/m 激活块体尺寸/m 2.3 60 11 1.4 150 12 12.5 110 35 165 15 1.4 120 25 17 430 80 11 100 12 500 62 3 90 15 560 55 100 12 625 78 110 12 680 40 120 11 78 800 100 130 18 900 100 140 15 1 020 155 150 10 54 750 80 155 10 800 70 190 10 900 115 1.4 110 16 1 000 100 125 8 1 100 90 135 14 表 5 3#测量区数据
Table 5. Results of light distance measurements at Site 3#
试验 试验日期 距离D /m (D·Q−1/3)/(m·kt−1/3) 位移S/mm (S·Q−1/3)/(mm·kt−1/3) 1348 1987.08.02 1 700 398 19.5 4.56 1350 1988.09.14 3 500 674 12 2.31 1346 1988.12.17 3 900 890 14 3.19 1352 1989.07.08 5 700 1 743 8 2.45 1410 1989.09.02 ~7 000 4 000 2 1.07 表 6 4#测量区数据
Table 6. Results of light distance measurements at Site 4#
试验编号 试验日期 距离D /m (D·Q−1/3)/(m·kt−1/3) 位移S/mm (S·Q−1/3)/(mm·kt−1/3) 1348 1987.08.02 3 700 866 6.66 1.56 1350 1988.09.14 1 450 279 19.7 3.8 1346 1988.12.17 6 650 1 518 5 1.14 1352 1989.07.08 2 900 887 3.5 1.07 -
[1] 徐开礼, 朱志澄. 构造地质学[M]. 2版. 北京: 地质出版社, 1989. [2] HILL D P, REASENBERG P A, MICHAEL A, et al. Seismicity remotely triggered by the magnitude 7.3 landers, California, earthquake [J]. Science, 1993, 260(5114): 1617–1623. DOI: 10.1126/science.260.5114.1617. [3] 钱七虎. 深部地下空间开发中的关键科学问题[R]. 南京: 解放军理工大学工程兵工程学院, 2004. [4] ADUSHKIN V V, OPARIN V N. From the alternating-sign explosion response of rocks to the pendulum waves in stressed geomedia: part iii [J]. Journal of Mining Science, 2014, 50(4): 623–645. DOI: 10.1134/S1062739114040024. [5] Adushkin V V, Spivak A. Underground explosions[R]. WGC-2015-03, 2015 [6] ADUSHKIN V V, SPIVAK A A. Changes in properties of rock massifs due to underground nuclear explosions [J]. Combustion Explosion and Shock Waves, 2004, 40(6): 624–634. DOI: 10.1023/B:CESW.0000048263.34894.58. [7] RODINOV V, ADUSHKIN V, KOSTUCHENKO V, et al. Mechanical effect of an underground explosion [M]. Moscow: Nedra, 1971. [8] KOCHARYAN G G. Experimental investigations on the dynamic deformation of underground excavations in rock [C] // 2nd North American Rock Mechanics Symposium. USA: American Rock Mechanics Association, 1996. [9] KOCHARYAN G G, BRIGADIN I V, KARYAKIN A G, et al. Failure of underground workings in rock of block structure under the action of dynamic forces: I: experimental data on the failure mechanics of real rock under the action of powerful explosions [J]. Journal of Mining Science, 1994, 30(4): 370–378. DOI: 10.1007/BF02048182. [10] KOCHARYAN G G, SPIVAK A A. Movement of rock blocks during large-scale underground explosions: Part i: experimental data [J]. Journal of Mining Science, 2001, 37(1): 64–76. DOI: 10.1023/A:1016736919590. [11] KOCHARYAN G G, SPIVAK A A, BUDKOV A M. Movement of rock blocks during large-scale underground explosions: part ii: estimates by analytical models, numerical calculations, and comparative analysis of theoretical and experimental data [J]. Journal of Mining Science, 2001, 37(2): 149–168. DOI: 10.1023/A:1012327627277. [12] NIKOLAEV A V. Distant aftershocks of earthquakes and underground nuclear explosions [J]. Reports of Russian Academy of Science, 1999, 364(1): 110–113. [13] MCKEOWN F A, DICKEY D D. Fault displacements and motion related to nuclear explosions [J]. Bulletin of Engineering Geology and the Environment, 1969, 59(6): 2253–2269. [14] CLOUD W K, CARDER D S. Ground effects from the boxcar and benham nuclear explosions [J]. Bulletin of the Seismological Society of America, 1969, 59(6): 2371–2381. [15] GLASSTONE S, DOLAN PHILIP J. The effects of nuclear weapons [M]. USA: U.S. Atomc Energy Commission, 1977. [16] ENGDAHL E R. Seismic effects of the milrow and cannikin nuclear explosions [J]. Bulletin of Engineering Geology and the Environment, 1972, 62(6): 1411–1423. [17] WANG T, SHI Q, NIKKHOO M, et al. The rise, collapse, and compaction of Mt. Mantap from the 3 September 2017 North Korean nuclear test [J]. Science, 2018, 361(6398): 166–170. DOI: 10.1126/science.aar7230. [18] 陈宗基, 吴海青. 我国在复杂岩层中的巷道掘进:兼论构造应力与时间效应的重要性 [J]. 岩石力学与工程学报, 1988, 7(1): 1–001. DOI: 10.3321/j.issn:1000-324X.1999.03.022.CHEN Zongji, WU Haiqing. Yunnelling in complex rock formations in China: importance of geotectonic stress and time effects [J]. Chinese Journal of Rock Mechanics and Engineering, 1988, 7(1): 1–001. DOI: 10.3321/j.issn:1000-324X.1999.03.022. [19] KURLENYA M V, OPARIN V N. Problems of nonlinear geomechanics: part ii [J]. Journal of Mining Science, 2000, 36(4): 305–326. DOI: 10.1023/A:1026673105750. [20] 王明洋, 李杰, 邱艳宇, 等. 基于能量原理的大规模地下爆炸不可逆位移计算方法 [J]. 爆炸与冲击, 2017, 37(4): 685–691. DOI: 10.11883/1001-1455(2017)04-0685-07.WANG Mingyang, LI Jie, QIU Yanyu, et al. Calculation method for irreversible deformation region radius under large-scale underground explosion based on law of energy [J]. Explosion and Shock Waves, 2017, 37(4): 685–691. DOI: 10.11883/1001-1455(2017)04-0685-07. [21] 王明洋, 李杰. 地下核爆炸诱发工程性地震的计算原理及深地防护[J]. 岩石力学与工程学报, 已录用.WANG Mingyang, LI Jie. The calculation principle of engineering seismic effects induced by underground nuclear explosion and deep underground protection[J]. Chinese Journal of Rock Mechanics and Engineering, accepted. [22] KURLENYA M V, OPARIN V N, VOSTRIKOV V I. Pendulum-type waves: part ii: experimental methods and main results of physical modeling [J]. Journal of Mining Science, 1996, 32(4): 245–273. DOI: 10.1007/BF02046215. [23] KURLENYA M V, OPARIN V N, VOSTRIKOV V I, et al. Pendulum waves: part iii: data of on-site observations [J]. Journal of Mining Science, 1996, 32(5): 341–361. DOI: 10.1007/BF02046155. [24] 李杰, 陈伟, 施存程, 等. 基于块系构造的大规模地下爆炸不可逆位移计算方法 [J]. 爆炸与冲击, 2018, 38(6): 1271–1277. DOI: 10.11883/bzycj-2017-0201.LI Jie, CHEN Wei, SHI Cuncheng, et al. Calculation method of irreversible deformation region radius under large-scale underground explosion based on block hierarchical structure [J]. Explosion and Shock Waves, 2018, 38(6): 1271–1277. DOI: 10.11883/bzycj-2017-0201.