地下核爆诱发工程性地震实测数据分析与不可逆变形范围计算

徐天涵 李杰 王明洋 徐小辉 何雯静

徐天涵, 李杰, 王明洋, 徐小辉, 何雯静. 地下核爆诱发工程性地震实测数据分析与不可逆变形范围计算[J]. 爆炸与冲击, 2019, 39(12): 121101. doi: 10.11883/bzycj-2018-0505
引用本文: 徐天涵, 李杰, 王明洋, 徐小辉, 何雯静. 地下核爆诱发工程性地震实测数据分析与不可逆变形范围计算[J]. 爆炸与冲击, 2019, 39(12): 121101. doi: 10.11883/bzycj-2018-0505
XU Tianhan, LI Jie, WANG Mingyang, XU Xiaohui, HE Wenjing. Analysis of test data of underground nuclear explosions and calculation of irreversible deformation range[J]. Explosion And Shock Waves, 2019, 39(12): 121101. doi: 10.11883/bzycj-2018-0505
Citation: XU Tianhan, LI Jie, WANG Mingyang, XU Xiaohui, HE Wenjing. Analysis of test data of underground nuclear explosions and calculation of irreversible deformation range[J]. Explosion And Shock Waves, 2019, 39(12): 121101. doi: 10.11883/bzycj-2018-0505

地下核爆诱发工程性地震实测数据分析与不可逆变形范围计算

doi: 10.11883/bzycj-2018-0505
详细信息
    作者简介:

    徐天涵(1995- ),男,博士研究生,martinxu41@126.com

    通讯作者:

    李 杰(1981- ),男,博士,副教授,lijierf@163.com

  • 中图分类号: O383.1

Analysis of test data of underground nuclear explosions and calculation of irreversible deformation range

  • 摘要: 地下核试验瞬间释放的巨大能量引起地壳能量的连锁反应,产生诱发地震等地球物理现象。本文对20世纪前苏联与美国进行的地下核试验数据进行整理与归纳,给出地下核爆炸试验诱发工程地震的范围以及激活岩块大小等。根据实测数据,指出地下核爆炸诱发工程性地震的力学本质,利用理论公式计算了地下核爆炸产生不可逆位移的临界能量因子范围,为相关研究提供理论基础和场地效应试验数据。
  • 图  1  GREELEY引起的主要地表错动

    Figure  1.  Ground motion induced by GREELEY

    图  2  DURYEA引起主要地表错动

    Figure  2.  Ground motion induced by DURYEA

    图  3  BOXCAR引起主要地表错动

    Figure  3.  Ground motion induced by BOXCAR

    图  4  BOXCAR引起地表最大加速度

    Figure  4.  Maximum ground acceleration induced by BOXCAR

    图  5  BOXCAR引起地表运动幅值

    Figure  5.  Amplitude of ground motion induced by BOXCAR

    图  6  BOXCAR引起地表振动最大速度

    Figure  6.  Maximum ground velocity induced by BOXCAR

    图  7  FAULTLESS引起地表错动

    Figure  7.  Ground motion induced by FAULTLESS

    图  8  BENHAM引发其中640处余震及断层位移分布

    Figure  8.  Location of 640 aftershocks and faults induced by BENHAM

    图  9  BENHAM引起地表最大加速度

    Figure  9.  Maximum ground acceleration induced by BENHAM

    图  10  BENHAM引起地表振动最大速度

    Figure  10.  Maximum ground velocity induced by BENHAM

    图  11  MILROW与CANNIKIN位置及附近地形

    Figure  11.  Location of MILROW and CANNIKIN and nearby terrain

    图  12  朝鲜核爆前后地表变形场

    Figure  12.  Deformation field before and after NKNT 6

    图  13  测试场布置图

    Figure  13.  Test site layout

    图  14  标准化距离与块体尺寸关系

    Figure  14.  Scaled size of blocks activated by a nuclear explosion

    表  1  爆炸规模与最大断层长度

    Table  1.   Magnitude of explosions and maximum length of active faults

    爆炸名称当量/Mt震级/mb最大激活断层长度/km
    SCOTCH0.155.41.54
    CHARTREUSE0.075.11.66
    HALFBEAK0.305.93.06
    STINGER5.32.61
    LONGSHOT6.12.25
    下载: 导出CSV

    表  2  不同岩石的A、n取值

    Table  2.   Values of A and n of different rocks

    岩石类型An
    花岗石(1.0~1.3)×1041.6~1.75
    盐岩(0.8~1.0)×1041.6
    凝灰岩(0.3~0.4×10)41.6
    下载: 导出CSV

    表  3  不可逆位移能量因子计算

    Table  3.   Calculation of irreversible displacement

    核爆炸试验岩性当量/kt埋深/m地表不可逆范围/m不可逆位移半径/(m·kt−1/3)vkd
    Greely沸石凝灰岩 8251 215 5 200 5700.164.9×10−10
    Duryea流纹岩 65 547 790 2390.638.0×10−9
    Boxcar沸石凝灰岩1 2001 160 6 100 5840.154.6×10−10
    Benham凝灰岩1 1001 40013 0001 2600.041.6×10−10
    Milrow枕熔岩1 0001 219 8 000 8090.091.6×10−10
    下载: 导出CSV

    表  4  爆炸激活块体尺寸

    Table  4.   Dimension of block that became more active due to explosive action during explosions

    爆炸当量/kt距爆心投影点距离/m激活块体尺寸/m爆炸当量/kt距爆心投影点距离/m激活块体尺寸/m
    2.3 60111.4 150 12
    12.511035 165 15
    1.41202517 430 80
    1110012 500 62
    3 9015 560 55
    10012 625 78
    11012 680 40
    1201178 800100
    13018 900100
    140151 020155
    1501054 750 80
    15510 800 70
    19010 900115
    1.4110161 000100
    125 81 100 90
    13514
    下载: 导出CSV

    表  5  3#测量区数据

    Table  5.   Results of light distance measurements at Site 3#

    试验试验日期距离D /m(D·Q−1/3)/(m·kt−1/3)位移S/mm(S·Q−1/3)/(mm·kt−1/3)
    13481987.08.021 70039819.54.56
    13501988.09.143 500674122.31
    13461988.12.173 900890143.19
    13521989.07.085 7001 74382.45
    14101989.09.02~7 0004 00021.07
    下载: 导出CSV

    表  6  4#测量区数据

    Table  6.   Results of light distance measurements at Site 4#

    试验编号试验日期距离D /m(D·Q−1/3)/(m·kt−1/3)位移S/mm(S·Q−1/3)/(mm·kt−1/3)
    13481987.08.023 7008666.661.56
    13501988.09.141 45027919.73.8
    13461988.12.176 6501 51851.14
    13521989.07.082 9008873.51.07
    下载: 导出CSV
  • [1] 徐开礼, 朱志澄. 构造地质学[M]. 2版. 北京: 地质出版社, 1989.
    [2] HILL D P, REASENBERG P A, MICHAEL A, et al. Seismicity remotely triggered by the magnitude 7.3 landers, California, earthquake [J]. Science, 1993, 260(5114): 1617–1623. DOI: 10.1126/science.260.5114.1617.
    [3] 钱七虎. 深部地下空间开发中的关键科学问题[R]. 南京: 解放军理工大学工程兵工程学院, 2004.
    [4] ADUSHKIN V V, OPARIN V N. From the alternating-sign explosion response of rocks to the pendulum waves in stressed geomedia: part iii [J]. Journal of Mining Science, 2014, 50(4): 623–645. DOI: 10.1134/S1062739114040024.
    [5] Adushkin V V, Spivak A. Underground explosions[R]. WGC-2015-03, 2015
    [6] ADUSHKIN V V, SPIVAK A A. Changes in properties of rock massifs due to underground nuclear explosions [J]. Combustion Explosion and Shock Waves, 2004, 40(6): 624–634. DOI: 10.1023/B:CESW.0000048263.34894.58.
    [7] RODINOV V, ADUSHKIN V, KOSTUCHENKO V, et al. Mechanical effect of an underground explosion [M]. Moscow: Nedra, 1971.
    [8] KOCHARYAN G G. Experimental investigations on the dynamic deformation of underground excavations in rock [C] // 2nd North American Rock Mechanics Symposium. USA: American Rock Mechanics Association, 1996.
    [9] KOCHARYAN G G, BRIGADIN I V, KARYAKIN A G, et al. Failure of underground workings in rock of block structure under the action of dynamic forces: I: experimental data on the failure mechanics of real rock under the action of powerful explosions [J]. Journal of Mining Science, 1994, 30(4): 370–378. DOI: 10.1007/BF02048182.
    [10] KOCHARYAN G G, SPIVAK A A. Movement of rock blocks during large-scale underground explosions: Part i: experimental data [J]. Journal of Mining Science, 2001, 37(1): 64–76. DOI: 10.1023/A:1016736919590.
    [11] KOCHARYAN G G, SPIVAK A A, BUDKOV A M. Movement of rock blocks during large-scale underground explosions: part ii: estimates by analytical models, numerical calculations, and comparative analysis of theoretical and experimental data [J]. Journal of Mining Science, 2001, 37(2): 149–168. DOI: 10.1023/A:1012327627277.
    [12] NIKOLAEV A V. Distant aftershocks of earthquakes and underground nuclear explosions [J]. Reports of Russian Academy of Science, 1999, 364(1): 110–113.
    [13] MCKEOWN F A, DICKEY D D. Fault displacements and motion related to nuclear explosions [J]. Bulletin of Engineering Geology and the Environment, 1969, 59(6): 2253–2269.
    [14] CLOUD W K, CARDER D S. Ground effects from the boxcar and benham nuclear explosions [J]. Bulletin of the Seismological Society of America, 1969, 59(6): 2371–2381.
    [15] GLASSTONE S, DOLAN PHILIP J. The effects of nuclear weapons [M]. USA: U.S. Atomc Energy Commission, 1977.
    [16] ENGDAHL E R. Seismic effects of the milrow and cannikin nuclear explosions [J]. Bulletin of Engineering Geology and the Environment, 1972, 62(6): 1411–1423.
    [17] WANG T, SHI Q, NIKKHOO M, et al. The rise, collapse, and compaction of Mt. Mantap from the 3 September 2017 North Korean nuclear test [J]. Science, 2018, 361(6398): 166–170. DOI: 10.1126/science.aar7230.
    [18] 陈宗基, 吴海青. 我国在复杂岩层中的巷道掘进:兼论构造应力与时间效应的重要性 [J]. 岩石力学与工程学报, 1988, 7(1): 1–001. DOI: 10.3321/j.issn:1000-324X.1999.03.022.

    CHEN Zongji, WU Haiqing. Yunnelling in complex rock formations in China: importance of geotectonic stress and time effects [J]. Chinese Journal of Rock Mechanics and Engineering, 1988, 7(1): 1–001. DOI: 10.3321/j.issn:1000-324X.1999.03.022.
    [19] KURLENYA M V, OPARIN V N. Problems of nonlinear geomechanics: part ii [J]. Journal of Mining Science, 2000, 36(4): 305–326. DOI: 10.1023/A:1026673105750.
    [20] 王明洋, 李杰, 邱艳宇, 等. 基于能量原理的大规模地下爆炸不可逆位移计算方法 [J]. 爆炸与冲击, 2017, 37(4): 685–691. DOI: 10.11883/1001-1455(2017)04-0685-07.

    WANG Mingyang, LI Jie, QIU Yanyu, et al. Calculation method for irreversible deformation region radius under large-scale underground explosion based on law of energy [J]. Explosion and Shock Waves, 2017, 37(4): 685–691. DOI: 10.11883/1001-1455(2017)04-0685-07.
    [21] 王明洋, 李杰. 地下核爆炸诱发工程性地震的计算原理及深地防护[J]. 岩石力学与工程学报, 已录用.

    WANG Mingyang, LI Jie. The calculation principle of engineering seismic effects induced by underground nuclear explosion and deep underground protection[J]. Chinese Journal of Rock Mechanics and Engineering, accepted.
    [22] KURLENYA M V, OPARIN V N, VOSTRIKOV V I. Pendulum-type waves: part ii: experimental methods and main results of physical modeling [J]. Journal of Mining Science, 1996, 32(4): 245–273. DOI: 10.1007/BF02046215.
    [23] KURLENYA M V, OPARIN V N, VOSTRIKOV V I, et al. Pendulum waves: part iii: data of on-site observations [J]. Journal of Mining Science, 1996, 32(5): 341–361. DOI: 10.1007/BF02046155.
    [24] 李杰, 陈伟, 施存程, 等. 基于块系构造的大规模地下爆炸不可逆位移计算方法 [J]. 爆炸与冲击, 2018, 38(6): 1271–1277. DOI: 10.11883/bzycj-2017-0201.

    LI Jie, CHEN Wei, SHI Cuncheng, et al. Calculation method of irreversible deformation region radius under large-scale underground explosion based on block hierarchical structure [J]. Explosion and Shock Waves, 2018, 38(6): 1271–1277. DOI: 10.11883/bzycj-2017-0201.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  5416
  • HTML全文浏览量:  1798
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-17
  • 修回日期:  2019-01-19
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回