竖直平面激波与水平热层作用后流场的理论计算方法研究

贾雷明 田宙

贾雷明, 田宙. 竖直平面激波与水平热层作用后流场的理论计算方法研究[J]. 爆炸与冲击, 2019, 39(12): 122202. doi: 10.11883/bzycj-2018-0510
引用本文: 贾雷明, 田宙. 竖直平面激波与水平热层作用后流场的理论计算方法研究[J]. 爆炸与冲击, 2019, 39(12): 122202. doi: 10.11883/bzycj-2018-0510
JIA Leiming, TIAN Zhou. On the theoretical calculation method for interaction between the vertical plane shock wave and the horizontal thermal layer[J]. Explosion And Shock Waves, 2019, 39(12): 122202. doi: 10.11883/bzycj-2018-0510
Citation: JIA Leiming, TIAN Zhou. On the theoretical calculation method for interaction between the vertical plane shock wave and the horizontal thermal layer[J]. Explosion And Shock Waves, 2019, 39(12): 122202. doi: 10.11883/bzycj-2018-0510

竖直平面激波与水平热层作用后流场的理论计算方法研究

doi: 10.11883/bzycj-2018-0510
详细信息
    作者简介:

    贾雷明(1989- ),男,博士研究生,jialeiming@nint.ac.cn

  • 中图分类号: O354.5

On the theoretical calculation method for interaction between the vertical plane shock wave and the horizontal thermal layer

  • 摘要: 围绕竖直平面激波与固壁附近水平热层作用问题,提出了流动进入准自相似阶段后固壁附近流场参量的理论计算方法。与已有的Mirels方法相比,本文的方法在下列三个方面进行了改进:(1)舍弃“热层内激波速度与入射激波速度相等”的假定,分析了热层内激波的传播过程,并基于几何激波动力学理论计算热层内激波强度;(2)假定在与入射激波后流体而非入射激波阵面固连的坐标系中,波后流体在定常等熵波作用下,形成沿固壁运动的“活塞”,驱动其前方的热层气体运动;(3)“活塞”内流体与其毗邻的热层气体满足压力和速度连续,不再引入速度比例系数。利用改进后的方法,对于马赫数为2.00的竖直平面激波,在不同热层密度条件下进行计算。本文方法得到的热层内激波强度以及物质界面处的压力、速度和密度等参量,与数值模拟结果偏差均小于10%,优于Shreffler和Mirels计算方法。对于马赫数为1.36的竖直平面激波,当其传播速度小于热层内气体声速时,Shreffler和Mirels计算方法不再适用,而本文中提出的方法得到的计算结果与数值模拟结果和已有实验数据基本吻合,最大偏差约20%。上述结果表明,本文中提出的理论计算方法提高了现有方法的合理性,扩大了适用范围。
  • 图  1  竖直平面激波与热层作用示意图

    Figure  1.  Illustration of the interaction of a vertical planar shock with a thermal layer

    图  2  波T沿界面的非正规折射(DP1DI

    Figure  2.  Irregular refraction of wave T at the horizontal material interface (DP1DI)

    图  3  波T沿界面的非正规折射(DP1DI

    Figure  3.  Irregular refraction of wave T at the horizontal material interface (DP1DI)

    图  4  热层内激波传播

    Figure  4.  Shock propagation with time in the thermal layer

    图  5  固壁附近流场区域划分示意图

    Figure  5.  Illustration of flow field division near the wall

    图  6  不同工况条件下压力p和水平速度u沿固壁的分布

    Figure  6.  Profiles of pressure and horizontal velocity along the wall in different cases

    图  7  t=0.5 ms,不同工况下的压力等值线图

    Figure  7.  Pressure contour lines at t =0.5 ms in different cases

    图  8  t=13.0 ms,流场密度云图分布(ρtl=0.50 kg/m3

    Figure  8.  Density contour at t=13.0 ms with ρtl=0.50 kg/m3

    图  9  不同时刻,物理量沿固壁分布(ρtl=0.50 kg/m3

    Figure  9.  Parameters vs. x along the wall at different time instants with ρtl=0.50 kg/m3

    图  10  不同理论方法的计算结果(MaI=2.00)

    Figure  10.  Results from various theoretical methods with MaI=2.00

    图  11  不同理论方法的计算结果(MaI=1.36)

    Figure  11.  Results from various theoretical methods with MaI=1.36

    表  1  流场中激波结构类型

    Table  1.   Wave structure types above material interface

    ρtl / (kg·m−3) pT / MPa DP1 / (m·s−1) pT' / MPa 波系类型
    0.10 0.219 1 607.83 0.191 W1
    0.20 0.268 1 244.74 0.233
    0.30 0.304 1 077.95 0.265
    0.40 0.333 975.25 0.291
    0.50 0.359 903.08 0.313
    0.60 0.381 848.39 0.333
    0.70 0.401 804.86 0.351
    0.80 0.419 768.98 0.368
    0.90 0.435 738.67 0.419 W2
    下载: 导出CSV

    表  2  不同工况条件下固壁附近流场参量

    Table  2.   Parameter values near the rigid wall for different cases

    ρtl/(kg·m−3)t*/msp4/MPau4/(m·s−1)ρ4L/(kg·m−3)ρ4R/(kg·m−3)p5/MPa
    TANSε/%TANSε/%TANSε/%TANSε/%TANSε/%
    0.110.00.1950.1836.51968.88941.812.871.471.441.870.160.157.380.1120.1184.92
    0.212.50.2390.2313.32910.17857.256.171.701.671.510.370.363.200.1510.1563.30
    0.313.50.2820.2752.52852.07820.683.821.911.872.110.620.604.000.1920.1930.76
    0.415.00.3200.3122.67798.33787.341.402.092.052.040.900.882.750.2280.2280.10
    0.516.00.3540.3491.58746.68755.161.122.252.270.931.201.172.910.2610.2610.12
    0.616.50.3830.3830.06697.86706.731.262.382.370.321.511.491.610.2900.2951.85
    0.717.00.4050.4152.49655.55653.820.262.472.532.291.821.810.700.3120.3336.35
    0.818.00.4340.4370.63577.03588.041.872.602.620.772.152.111.920.3640.3660.67
    0.918.00.4470.4470.02515.82525.431.832.652.660.242.432.401.120.4090.4080.30
    下载: 导出CSV
  • [1] ZHELEZNYAK M B, MNATSAKANYAN A Kh, PASTERNAK V E, et al. Effect of precursor radiation on the flow structure and ionization behind the shock front in inert gases [J]. Fluid Dynamics, 1991, 26(3): 421–427. DOI: 10.1007/BF01059015.
    [2] NEEDHAM C E. Blast waves [M]. New York: Springer, 2010: 227−245.
    [3] NEMCHINOV I V, ARTEM’EV V I, BERGELSON V I, et al. Rearrangement of the bow shock shape using a hot spike [J]. Shock Waves, 1994, 4(1): 35–40. DOI: 10.1007/BF01414630.
    [4] KOROTEEVA E, ZNAMENSKAYA I, ORLOV D, et al. Shock wave interaction with a thermal layer produced by a plasma sheet actuator [J]. Journal of Physics D: Applied Physics, 2017, 50(8): 085204. DOI: 10.1088/1361-6463/aa5874.
    [5] WANG H, LI J, JIN D, et al. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation [J]. Acta Astronautica, 2018, 142: 45–56. DOI: 10.1016/j.actaastro.2017.10.023.
    [6] GRIFFITH W C. Interaction of a shock wave with a thermal boundary layer [J]. Journal of the Aeronautical Science, 1956, 23(1): 16–22. DOI: 10.2514/8.3495.
    [7] SHREFFLER R G, CHRISTIAN R H. Boundary disturbances in high-explosive shock tubes [J]. Journal of Applied Physics, 1954, 25(3): 324–331. DOI: 10.1063/1.1721633.
    [8] SKIFSTAD J G. Irregular refraction of a strong shock wave by a wedge of hot gas [J]. Physics of Fluids, 1967, 10(2): 455–457. DOI: 10.1063/1.1762129.
    [9] GION E J. Plane shock interacting with thermal layer [J]. Physics of Fluids, 1977, 20(4): 700–702. DOI: 10.1063/1.861928.
    [10] VOINOVICH P A, EVTYUKHIN N V, ZHMAKIN A I, et al. Shock wave stratification in inhomogeneous media [J]. Combustion, Explosion and Shock Waves, 1987, 23(1): 70–72. DOI: 10.1007/BF00755637.
    [11] ARTEM’EV V I, BERGEL’SON V N, KALMYKOV A A, et al. Development of a forerunner in interaction of a shock wave with a layer of reduced pressure [J]. Fluid Dynamics, 1988, 23(2): 290–295. DOI: 10.1007/BF01051902.
    [12] ANDRUSHCHENKO V A, MESHCHERYAKOV M V. Interaction of spherical shock waves with near surface thermal gas inhomogeneities [J]. Combustion, Explosion and Shock Waves, 1990, 26(3): 321–325. DOI: 10.1007/BF00751372.
    [13] BERGEL’SON V I, NEMCHINOV I V, ORLOVA T I. Development of predecessors being formed during shock wave interaction with reduced density gas channels [J]. Combustion, Explosion and Shock Waves, 1990, 26(2): 244–250. DOI: 10.1007/BF00742419.
    [14] ZASLAVSKII B I, MOROZKIN S Y, PROKOF’EV A A, et al. Flow of a planar shock wave around a thermal hot layer at a rigid wall [J]. Journal of Applied Mechanics and Technical Physics, 1990, 31(3): 354–361.
    [15] RAYEVSKY D, BEN-DOR G. Shock wave interaction with a thermal layer [J]. AIAA Journal, 1992, 30(4): 1135–1139. DOI: 10.2514/3.11041.
    [16] GRUN J, BURRIS R, JOYCE G, et al. Small-scale laboratory measurement and simulation of a thermal precursor shock [J]. Journal of Applied Physics, 1998, 83(5): 2420–2427. DOI: 10.1063/1.367001.
    [17] 范宝春, 李洁, 任兵. 激波与被物质覆盖的壁面的相互作用 [J]. 兵工学报, 2002, 23(3): 366–369. DOI: 10.3321/j.issn:1000-1093.2002.03.020.

    FAN Baochun, LI Jie, REN Bing. Shock Wave interaction with a bottom wall covered by a material layer [J]. Acta Armamentarii, 2002, 23(3): 366–369. DOI: 10.3321/j.issn:1000-1093.2002.03.020.
    [18] GEORGIEVSKII P Yu, LEVIN V A, SUTYRIN O G. Two-dimensional self-similar flows generated by the interaction between a shock and low-density gas regions [J]. Fluid Dynamics, 2010, 45(2): 281–288. DOI: 10.1134/S0015462810020134.
    [19] HESS R V. Interaction of moving shocks and hot layers[R]. Langley Field, Va.: Langley Aeronautical Laboratory, 1957.
    [20] MIRELS H. Interaction of moving shock with thin stationary thermal layer[R]. El Segundo, Calif.: Aerophysics Laboratory, 1986.
    [21] 李维新. 一维不定常流与冲击波[M]. 北京:国防工业出版社, 2002: 295−302.
    [22] WHITHAM G B. A new approach to problems of shock dynamics Part I Two-dimensional problems [J]. Journal of Fluid Mechanics, 1957, 2(2): 145–171. DOI: 10.1017/S002211205700004X.
    [23] RIDOUX J, LARDJANE N, MONASSE L, et al. Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation [J]. Shock Waves, 2018, 28(2): 401–416. DOI: 10.1007/s00193-017-0748-2.
    [24] CATHERASOO C J, STURTEVANT B. Shock dynamics in non-uniform media [J]. Journal of Fluid Mechanics, 1983, 127: 539–561. DOI: 10.1017/S0022112083002876.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  5238
  • HTML全文浏览量:  1469
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-21
  • 修回日期:  2019-05-20
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回