On the theoretical calculation method for interaction between the vertical plane shock wave and the horizontal thermal layer
-
摘要: 围绕竖直平面激波与固壁附近水平热层作用问题,提出了流动进入准自相似阶段后固壁附近流场参量的理论计算方法。与已有的Mirels方法相比,本文的方法在下列三个方面进行了改进:(1)舍弃“热层内激波速度与入射激波速度相等”的假定,分析了热层内激波的传播过程,并基于几何激波动力学理论计算热层内激波强度;(2)假定在与入射激波后流体而非入射激波阵面固连的坐标系中,波后流体在定常等熵波作用下,形成沿固壁运动的“活塞”,驱动其前方的热层气体运动;(3)“活塞”内流体与其毗邻的热层气体满足压力和速度连续,不再引入速度比例系数。利用改进后的方法,对于马赫数为2.00的竖直平面激波,在不同热层密度条件下进行计算。本文方法得到的热层内激波强度以及物质界面处的压力、速度和密度等参量,与数值模拟结果偏差均小于10%,优于Shreffler和Mirels计算方法。对于马赫数为1.36的竖直平面激波,当其传播速度小于热层内气体声速时,Shreffler和Mirels计算方法不再适用,而本文中提出的方法得到的计算结果与数值模拟结果和已有实验数据基本吻合,最大偏差约20%。上述结果表明,本文中提出的理论计算方法提高了现有方法的合理性,扩大了适用范围。Abstract: In this paper we presented a theoretical calculation method for the physical quantities of flow filed after entering the quasi-self-similar stage concerning the interaction between the vertical planar shock wave and the horizontal thermal layer near the rigid wall. Compared with the existing Mirels’ theoretical method, ours has improved in the following three aspects: (1) the propagation process of the shock in the thermal layer is analyzed, and the shock intensity is calculated following the theory of geometrical shock dynamics, whereas the assumption that the propagation speed of the shock in the thermal layer is equal to that of the incident shock is abandoned; (2) an assumption is made that in the coordinate system fixed with the fluid behind the incident shock instead of the incident shock itself, the fluid behind the incident shock evolves into a " piston” under the action of steady isentropic wave, which moves along the wall and drives the thermal layer gas in front of it; and (3) the fluid in the " piston” and its adjacent thermal layer gas satisfy the continuity of pressure and velocity without introducing the velocity proportional coefficient. Our improved method is employed in the cases involving a Mach number 2.00 incident shock and different thermal layer densities, and gives the shock strength in the thermal layer and the field pressure, velocity and density on each side of the material interface. The deviation between the theoretical results and numerical results is below 10% in different thermal layer densities, which is much better than those of the Shreffler’s and Mirels’ methods. For a Mach number 1.36 incident shock with a propagation speed less than the speed of sound in the thermal layer, Shreffler’s and Mirels’ methods are no longer applicable, whereas the above mentioned theoretical mothod could still work and produce results that accord well with experimental data and numerical results, and the maximum deviation is about 20%, indicating that the above improved theoretical method is more reasonable and applicable than the existing theoretical calculation methods.
-
Key words:
- shock wave /
- thermal layer /
- quasi-self-similar /
- flow field quantity
-
表 1 流场中激波结构类型
Table 1. Wave structure types above material interface
ρtl / (kg·m−3) pT / MPa DP1 / (m·s−1) pT' / MPa 波系类型 0.10 0.219 1 607.83 0.191 W1 0.20 0.268 1 244.74 0.233 0.30 0.304 1 077.95 0.265 0.40 0.333 975.25 0.291 0.50 0.359 903.08 0.313 0.60 0.381 848.39 0.333 0.70 0.401 804.86 0.351 0.80 0.419 768.98 0.368 0.90 0.435 738.67 0.419 W2 表 2 不同工况条件下固壁附近流场参量
Table 2. Parameter values near the rigid wall for different cases
ρtl/(kg·m−3) t*/ms p4/MPa u4/(m·s−1) ρ4L/(kg·m−3) ρ4R/(kg·m−3) p5/MPa TA NS ε/% TA NS ε/% TA NS ε/% TA NS ε/% TA NS ε/% 0.1 10.0 0.195 0.183 6.51 968.88 941.81 2.87 1.47 1.44 1.87 0.16 0.15 7.38 0.112 0.118 4.92 0.2 12.5 0.239 0.231 3.32 910.17 857.25 6.17 1.70 1.67 1.51 0.37 0.36 3.20 0.151 0.156 3.30 0.3 13.5 0.282 0.275 2.52 852.07 820.68 3.82 1.91 1.87 2.11 0.62 0.60 4.00 0.192 0.193 0.76 0.4 15.0 0.320 0.312 2.67 798.33 787.34 1.40 2.09 2.05 2.04 0.90 0.88 2.75 0.228 0.228 0.10 0.5 16.0 0.354 0.349 1.58 746.68 755.16 1.12 2.25 2.27 0.93 1.20 1.17 2.91 0.261 0.261 0.12 0.6 16.5 0.383 0.383 0.06 697.86 706.73 1.26 2.38 2.37 0.32 1.51 1.49 1.61 0.290 0.295 1.85 0.7 17.0 0.405 0.415 2.49 655.55 653.82 0.26 2.47 2.53 2.29 1.82 1.81 0.70 0.312 0.333 6.35 0.8 18.0 0.434 0.437 0.63 577.03 588.04 1.87 2.60 2.62 0.77 2.15 2.11 1.92 0.364 0.366 0.67 0.9 18.0 0.447 0.447 0.02 515.82 525.43 1.83 2.65 2.66 0.24 2.43 2.40 1.12 0.409 0.408 0.30 -
[1] ZHELEZNYAK M B, MNATSAKANYAN A Kh, PASTERNAK V E, et al. Effect of precursor radiation on the flow structure and ionization behind the shock front in inert gases [J]. Fluid Dynamics, 1991, 26(3): 421–427. DOI: 10.1007/BF01059015. [2] NEEDHAM C E. Blast waves [M]. New York: Springer, 2010: 227−245. [3] NEMCHINOV I V, ARTEM’EV V I, BERGELSON V I, et al. Rearrangement of the bow shock shape using a hot spike [J]. Shock Waves, 1994, 4(1): 35–40. DOI: 10.1007/BF01414630. [4] KOROTEEVA E, ZNAMENSKAYA I, ORLOV D, et al. Shock wave interaction with a thermal layer produced by a plasma sheet actuator [J]. Journal of Physics D: Applied Physics, 2017, 50(8): 085204. DOI: 10.1088/1361-6463/aa5874. [5] WANG H, LI J, JIN D, et al. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation [J]. Acta Astronautica, 2018, 142: 45–56. DOI: 10.1016/j.actaastro.2017.10.023. [6] GRIFFITH W C. Interaction of a shock wave with a thermal boundary layer [J]. Journal of the Aeronautical Science, 1956, 23(1): 16–22. DOI: 10.2514/8.3495. [7] SHREFFLER R G, CHRISTIAN R H. Boundary disturbances in high-explosive shock tubes [J]. Journal of Applied Physics, 1954, 25(3): 324–331. DOI: 10.1063/1.1721633. [8] SKIFSTAD J G. Irregular refraction of a strong shock wave by a wedge of hot gas [J]. Physics of Fluids, 1967, 10(2): 455–457. DOI: 10.1063/1.1762129. [9] GION E J. Plane shock interacting with thermal layer [J]. Physics of Fluids, 1977, 20(4): 700–702. DOI: 10.1063/1.861928. [10] VOINOVICH P A, EVTYUKHIN N V, ZHMAKIN A I, et al. Shock wave stratification in inhomogeneous media [J]. Combustion, Explosion and Shock Waves, 1987, 23(1): 70–72. DOI: 10.1007/BF00755637. [11] ARTEM’EV V I, BERGEL’SON V N, KALMYKOV A A, et al. Development of a forerunner in interaction of a shock wave with a layer of reduced pressure [J]. Fluid Dynamics, 1988, 23(2): 290–295. DOI: 10.1007/BF01051902. [12] ANDRUSHCHENKO V A, MESHCHERYAKOV M V. Interaction of spherical shock waves with near surface thermal gas inhomogeneities [J]. Combustion, Explosion and Shock Waves, 1990, 26(3): 321–325. DOI: 10.1007/BF00751372. [13] BERGEL’SON V I, NEMCHINOV I V, ORLOVA T I. Development of predecessors being formed during shock wave interaction with reduced density gas channels [J]. Combustion, Explosion and Shock Waves, 1990, 26(2): 244–250. DOI: 10.1007/BF00742419. [14] ZASLAVSKII B I, MOROZKIN S Y, PROKOF’EV A A, et al. Flow of a planar shock wave around a thermal hot layer at a rigid wall [J]. Journal of Applied Mechanics and Technical Physics, 1990, 31(3): 354–361. [15] RAYEVSKY D, BEN-DOR G. Shock wave interaction with a thermal layer [J]. AIAA Journal, 1992, 30(4): 1135–1139. DOI: 10.2514/3.11041. [16] GRUN J, BURRIS R, JOYCE G, et al. Small-scale laboratory measurement and simulation of a thermal precursor shock [J]. Journal of Applied Physics, 1998, 83(5): 2420–2427. DOI: 10.1063/1.367001. [17] 范宝春, 李洁, 任兵. 激波与被物质覆盖的壁面的相互作用 [J]. 兵工学报, 2002, 23(3): 366–369. DOI: 10.3321/j.issn:1000-1093.2002.03.020.FAN Baochun, LI Jie, REN Bing. Shock Wave interaction with a bottom wall covered by a material layer [J]. Acta Armamentarii, 2002, 23(3): 366–369. DOI: 10.3321/j.issn:1000-1093.2002.03.020. [18] GEORGIEVSKII P Yu, LEVIN V A, SUTYRIN O G. Two-dimensional self-similar flows generated by the interaction between a shock and low-density gas regions [J]. Fluid Dynamics, 2010, 45(2): 281–288. DOI: 10.1134/S0015462810020134. [19] HESS R V. Interaction of moving shocks and hot layers[R]. Langley Field, Va.: Langley Aeronautical Laboratory, 1957. [20] MIRELS H. Interaction of moving shock with thin stationary thermal layer[R]. El Segundo, Calif.: Aerophysics Laboratory, 1986. [21] 李维新. 一维不定常流与冲击波[M]. 北京:国防工业出版社, 2002: 295−302. [22] WHITHAM G B. A new approach to problems of shock dynamics Part I Two-dimensional problems [J]. Journal of Fluid Mechanics, 1957, 2(2): 145–171. DOI: 10.1017/S002211205700004X. [23] RIDOUX J, LARDJANE N, MONASSE L, et al. Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation [J]. Shock Waves, 2018, 28(2): 401–416. DOI: 10.1007/s00193-017-0748-2. [24] CATHERASOO C J, STURTEVANT B. Shock dynamics in non-uniform media [J]. Journal of Fluid Mechanics, 1983, 127: 539–561. DOI: 10.1017/S0022112083002876.