An experimental study of dynamic bond-slip behaviors of plain steel barsin concrete at different strain rates
-
摘要: 为研究应变率对钢筋与混凝土界面粘结性能的影响,利用高速拉伸试验机进行了光圆钢筋的动态拔出实验。通过合理设计加载夹具和测试方法,得到不同应变率下光圆钢筋的“粘结-滑移”全程曲线。实验结果表明:随着应变率的增大,钢筋-混凝土界面的粘结强度显著提高,且界面失效形式由拔出失效为主转变为混凝土试件的破裂破坏为主;粘结强度的动态增强因子(f DIF)随应变率的增长斜率明显可以分为低应变率和高应变率两个区段。低应变率下,fDIF增长较为缓慢;而高应变率下,f DIF快速增长;转变应变率约为33 s−1。
-
关键词:
- 应变率 /
- 钢筋混凝土 /
- 动态粘结-滑移力学行为 /
- 粘结强度动态增强因子
Abstract: To investigate the effect of strain rate on the bond-slip behaviors of smooth steel bars in concrete, we conducted plain steel bar pullout tests from quasi-static to impact loading using a high-speed tensile test machine and obtained the whole bond-slip curves of the plane steel bar at different strain rate with reasonable designed stop devices and testing methods. The test results show that the bond strength increased obviously, and the failure mode transferred from pullout to splitting with the increase of the strain rate, that the dynamic increase factor(DIF) curve can be divided into two parts, those of the low and high strain rates, and that the DIF increased slowly with the increase of the strain rate at low strain rates, but increased sharply at high strain rates. -
图 1 典型的准静态粘结-滑移曲线[11]
Figure 1. A typical quasi-static “bond-slip” curves
表 1 试验结果综合
Table 1. collection of the test results
加载速度/(mm·s−1) 名义应变率/s−1 编号 粘结强度/MPa 滑移应变εs /% 名义失效应变εf /% 破坏形态 0.03 0.001 01 8.85 0.88 10.95 拔出 02 8.44 1.27 12.3 拔出 03 10.9 0.95 11.2 拔出 0.30 0.010 01 9.59 0.88 14.2 拔出 02 11.4 0.97 11.6 劈裂 03 9.88 0.89 12.8 拔出 1.00 0.030 01 12.4 1.12 11.5 拔出 02 10.9 0.80 13.6 拔出 03 12.8 1.36 14.6 拔出 10.0 0.333 01 14.1 1.67 11.7 拔出 02 14.9 1.35 12.1 劈裂 03 11.2 2.03 15.4 拔出 100 3.333 01 11.2 3.41 14.7 拔出 02 11.8 1.89 12.9 拔出 03 10.4 1.33 16.8 拔出 1 000 33.33 01 14.8 1.85 23.2 拔出 02 12.4 0.93 31.6 拔出 03 12.2 2.18 30.9 拔出 3 000 100.0 01 19.0 2.91 − 劈裂 02 21.2 2.07 − 劈裂 03 19.9 1.91 劈裂 5 000 166.7 01 20.7 3.10 − 劈裂 02 21.3 2.35 − 劈裂 03 24.0 2.91 − 劈裂 10 000 333.3 01 26.3 3.33 − 劈裂 02 23.2 4.26 − 劈裂 03 26.8 2.79 − 劈裂 -
[1] MIRZA S M. Study of bond stress-slip relationships in reinforced concrete [J]. Aci Journal, 1979, 76(1): 19–46. DOI: 10.1016/0022-3115(79)90116-8. [2] DÍAZ T, JOSÉ R, HAACH V G. Equivalent stress-strain law for embedded reinforcements considering bond-slip effects [J]. Engineering Structures, 2018, 165: 247–253. DOI: 10.1016/j.engstruct.2018.03.045. [3] GAO X, LI N, REN X. Analytic solution for the bond stress-slip relationship between rebar and concrete [J]. Construction and Building Materials, 2019, 197: 385–97. DOI: 10.1016/j.conbuildmat.2018.11.206. [4] GAMBAROVA P G, ROSATI G P. Bond and splitting in reinforced concrete: test results on bar pull-out [J]. Materials & Structures, 1996, 29(5): 267–276. DOI: 10.1007/BF02486361. [5] MO Y L, CHAN J. Bond and slip of plain rebars in concrete [J]. Journal of Materials in Civil Engineering, 1996, 8(4): 208–211. DOI: 10.1061/(ASCE)0899-1561(1996)8:4(208). [6] FELDMAN L R, BARTLETT F M. Bond stresses along plain steel reinforcing bars in pullout specimens [J]. Aci Structural Journal, 2007, 104(6): 685–692. DOI: 10.1002/tal.417. [7] LUTZ L R A, GERGELY P. Mechanics of bond and slip of deformed bars in concrete [J]. ACI Journal, 1967, 64(11): 711–721. DOI: 10.14359/7600. [8] LUNDGREN K. Bond between ribbed bars and concrete. Part 1: modified model [J]. Magazine of Concrete Research, 2005, 57(7): 371–382. DOI: 10.1680/macr.2005.57.7.371. [9] BOMPA D V, ELGHAZOULI A Y. Bond-slip response of deformed bars in rubberised concrete [J]. Construction & Building Materials, 2017, 154: 884–898. DOI: 10.1016/j.conbuildmat.2017.08.016. [10] KIM S W, YUN H D, PARK W S, et al. Bond strength prediction for deformed steel rebar embedded in recycled coarse aggregate concrete [J]. Materials & Design, 2015, 83: 257–269. DOI: 10.1016/j.matdes.2015.06.008. [11] MICHAL M, KEUSER M, SOLOMOS G, et al. Experimental investigation of bond strength under high loading rates[C] // European Physical Journal Web of Conferences. European Physical Journal Web of Conferences, 2015. DOI: 10.1051/epjconf/20159401044. [12] ESFAHANI M R, RANGAN B V. Local bond strength of reinforcing bars in normal strength and high-strength concrete (HSC) [J]. ACI Structural Journal, 1998, 95(2): 96–106. DOI: 10.14359/530. [13] SULAIMAN M F, MA C K, APANDI N M, et al. A review on bond and anchorage of confined high-strength concrete [J]. Structures, 2017, 11: 97–109. DOI: 10.1016/j.istruc.2017.04.004. [14] GIURIANI E, SCHUMM C, PLIZZARI G. Role of stirrups and residual tensile strength of cracked concrete on bond [J]. Journal of Structural Engineering, 1991, 117(1): 1–18. DOI: 10.1061/(ASCE)0733-9445(1991)117:1(1). [15] AHMED K, SIDDIQI Z A, ASHRAF M, et al. Effect of rebar cover and development length on bond and slip in high strength concrete [J]. Pakistan Journal of Engineering and Applied Sciences, 2008, 2: 79–87. [16] 郑晓燕, 吴胜兴. 动荷载下锈蚀钢筋混凝土粘结滑移特性的试验研究 [J]. 土木工程学报, 2006, 39(6): 42–46. DOI: 10.3321/j.issn:1000-131X.2006.06.007.ZHENG Xiaoyan, WU Shengxing. An experimental study on the bond-slip behavior of corroded steel bars in concrete under dynamic loads [J]. China Civil Engineering Journal, 2006, 39(6): 42–46. DOI: 10.3321/j.issn:1000-131X.2006.06.007. [17] ZHANG W P, CHEN H, GU X L. Bond behaviour between corroded steel bars and concrete under different strain rates [J]. Magazine of Concrete Research, 2015, 68(7): 1–15. DOI: 10.1680/macr.15.00174. [18] HANSEN R J, LIEPINS A A. Behavior of bond under dynamic loading [J]. ACI Structural Journal, 1959, 59(4): 563–584. DOI: 10.14359/7929. [19] WEATHERSBY J H. Investigation of bond slip between concrete and steel reinforcement under dynamic loading conditions [D]. Baton Rouge: Louisiana State University, 2003: 1−263. [20] VOS E. Influence of loading rate and radial pressure on bond in reinforced concrete [D]. Delft: Delft University of Technology, 1983: 1−263. [21] SOLOMOS G, BERRA M. Rebar pullout testing under dynamic Hopkinson bar induced impulsive loading [J]. Materials & Structures, 2010, 43(1-2): 247–260. DOI: 10.1617/s11527-009-9485-z. [22] YAN C. Bond between reinforcing bars and concrete under impact loading [D]. Vancouver: University of British, 1992. 期刊类型引用(18)
1. 高飞,邓树新,张国凯,纪玉国,刘晨康,王明洋. 缩比模型弹侵彻岩石靶尺寸效应试验研究与理论分析. 兵工学报. 2023(12): 3601-3612 . 百度学术
2. 朱少平,王志亮,熊峰. 卵形弹丸对混凝土侵彻动力响应数值研究. 合肥工业大学学报(自然科学版). 2022(02): 243-250 . 百度学术
3. 邵伟,范锦彪,耿宇飞,王玮. 基于微元法的侵彻体弹头摩擦升温计算方法. 探测与控制学报. 2022(02): 34-40 . 百度学术
4. 章毅,胡枫,吴昊,王安宝. 高强混凝土介质侵彻系数计算方法. 防护工程. 2021(02): 31-38 . 百度学术
5. 张丁山,谷鸿平,徐笑,张博,吕永柱. 截卵形头部平台直径对初始侵彻弹道偏转的影响. 高压物理学报. 2021(05): 138-144 . 百度学术
6. 吴飚,任辉启,陈力,杨建超,黄家蓉,高伟亮,金栋梁. 弹体侵彻混凝土尺度效应试验研究与理论分析. 防护工程. 2020(02): 1-10 . 百度学术
7. 彭永,卢芳云,方秦,吴昊,李翔宇. 弹体侵彻混凝土靶体的尺寸效应分析. 爆炸与冲击. 2019(11): 58-68 . 本站查看
8. 张学伦,汪衡,谭正军,王昭明. 混凝土靶边界效应与弹丸长径比关联性的研究. 兵器装备工程学报. 2018(04): 11-13+18 . 百度学术
9. 刘宗伟,武海军,张学伦,刘俞平,熊国松,谭正军,曾令清. 高超弹体侵蚀机理及抗侵蚀设计研究. 兵器装备工程学报. 2017(04): 46-49 . 百度学术
10. 李艳,范文,赵均海,翟越. 中低速长杆弹侵彻半无限岩石靶的动态响应研究. 工程力学. 2017(09): 139-149 . 百度学术
11. 薛建锋,沈培辉,王晓鸣. 基于层裂机理的弹体侵彻混凝土的工程模型. 国防科技大学学报. 2017(03): 194-200 . 百度学术
12. 曹扬悦也,蒋志刚,谭清华,蒙朝美. 基于Hoek-Brown准则的混凝土-岩石类靶侵彻模型. 振动与冲击. 2017(05): 48-53+60 . 百度学术
13. 薛建锋,沈培辉,王晓鸣. 不同头部形状弹体侵彻混凝土的试验研究. 兵工自动化. 2016(02): 75-78 . 百度学术
14. 邓佳杰,张先锋,乔治军,郭磊,何勇,陈东东. 卵形弹体侵彻预开孔靶理论分析. 爆炸与冲击. 2016(05): 625-632 . 本站查看
15. 张学伦,刘宗伟. 弹丸CRH值对侵彻混凝土深度影响研究. 兵器装备工程学报. 2016(10): 31-34 . 百度学术
16. 薛建锋,沈培辉,王晓鸣. 钻地弹斜侵彻混凝土靶的工程计算模型. 航空学报. 2016(06): 1899-1911 . 百度学术
17. 张丁山,吕永柱,周涛,谷鸿平,张立建. 侵彻战斗部引信前后置过载的影响因素. 探测与控制学报. 2016(06): 41-45+50 . 百度学术
18. 彭永,方秦,吴昊,孔祥振,肖云凯. 不同头部形状弹体侵彻混凝土靶体的终点弹道参数分析. 兵工学报. 2014(S2): 128-134 . 百度学术
其他类型引用(11)
-