耦合火焰不稳定的爆炸超压预测

李艳超 毕明树 高伟

李艳超, 毕明树, 高伟. 耦合火焰不稳定的爆炸超压预测[J]. 爆炸与冲击, 2020, 40(1): 012101. doi: 10.11883/bzycj-2019-0004
引用本文: 李艳超, 毕明树, 高伟. 耦合火焰不稳定的爆炸超压预测[J]. 爆炸与冲击, 2020, 40(1): 012101. doi: 10.11883/bzycj-2019-0004
LI Yanchao, BI Mingshu, GAO Wei. Explosion pressure prediction considering the flame instabilities[J]. Explosion And Shock Waves, 2020, 40(1): 012101. doi: 10.11883/bzycj-2019-0004
Citation: LI Yanchao, BI Mingshu, GAO Wei. Explosion pressure prediction considering the flame instabilities[J]. Explosion And Shock Waves, 2020, 40(1): 012101. doi: 10.11883/bzycj-2019-0004

耦合火焰不稳定的爆炸超压预测

doi: 10.11883/bzycj-2019-0004
基金项目: 国家自然科学基金(51674059)
详细信息
    作者简介:

    李艳超(1989- ),男,博士研究生,lyc092451@mail.dlut.edu.cn

    通讯作者:

    高 伟(1984- ),男,博士,教授,gaoweidlut@dlut.edu.cn

  • 中图分类号: O389;TK91

Explosion pressure prediction considering the flame instabilities

  • 摘要: 基于火焰不稳定和爆炸超压的耦合机制,通过向光滑火焰模型中引入褶皱因子,建立了褶皱火焰模型和湍流火焰模型,对密闭燃烧室内爆炸超压进行理论预测,且对比了绝热压缩和等温压缩对爆炸超压预测的影响规律。结果表明:在增强的流体动力学不稳定作用下,膨胀火焰失稳加剧,且在定容燃烧阶段形成胞状火焰;光滑火焰模型忽略了火焰不稳定,爆炸超压理论预测值比实验值偏低,且等温压缩下超压预测值低于绝热压缩下的预测值;湍流火焰模型高估了火焰褶皱程度,超压预测值远高于实验值;褶皱火焰模型可成功预测丙烷/空气爆炸压力和燃烧室体积V=25.6 m3的甲烷/空气爆炸压力;对于甲烷/空气爆炸,燃烧室体积V≤1.25 m3时,实验压力值介于褶皱火焰模型和绝热光滑火焰模型预测值之间。
  • 图  1  实验装置图

    Figure  1.  Experimental apparatus

    图  2  甲烷/空气火焰形态特性和爆炸超压的耦合关系(Φ=1.0)

    Figure  2.  Couplings of flame morphology and explosion pressure of stoichiometric methane/air mixture (Φ=1.0)

    图  3  丙烷/空气火焰形态特性和爆炸超压的耦合关系(Φ=1.0)

    Figure  3.  Couplings of flame morphology and explosion pressure of stoichiometric propane/air mixture (Φ=1.0)

    图  4  丙烷/空气爆炸超压预测(14 L燃烧腔室)

    Figure  4.  Explosion pressure prediction of stoichiometric propane/air mixture in a 14 L chamber

    图  5  甲烷/空气爆炸超压预测的尺度效应(Φ=1.0)

    Figure  5.  Scale effect of explosion pressure prediction of stoichiometric methane/air mixture (Φ=1.0)

  • [1] KWON O C, ROZENCHAN G, LAW C K. Cellular instabilities and self-acceleration of outwardly propagating spherical flames [J]. Proceedings of the Combustion Institute, 2002, 29(2): 1775–1783. DOI: 10.1016/S1540-7489(02)80215-2.
    [2] WU F J, JOMAAS G, LAW C K. An experimental investigation on self-acceleration of cellular spherical flames [J]. Proceedings of the Combustion Institute, 2013, 34(1): 937–945. DOI: 10.1016/j.proci.2012.05.068.
    [3] NISHIMURA I, MOGI T, DOBASHI R. Simple method for predicting pressure behavior during gas explosions in confined spaces considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 351–354. DOI: 10.1016/j.jlp.2011.08.009.
    [4] DAHOE A E, ZEVENBERGEN J F, LEMKOWITZ S M, et al. Dust explosions in spherical vessels: the role of flame thickness in the validity of the ‘cube-root law’ [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 33–44. DOI: 10.1016/0950-4230(95)00054-2.
    [5] BRADLEY D, MITCHESON A. Mathematical solutions for explosions in spherical vessels [J]. Combustion and Flame, 1976, 26: 201–217. DOI: 10.1016/0010-2180(76)90072-9.
    [6] LAUTKASKI R. Pressure rise in confined gas explosions [DB/OL]. (2005-12-30). https://www.vtt.fi/inf/julkaisut/muut/2005/PRO1_P1026_05.pdf.
    [7] KUZNETSOV M, KOBELT S, GRUNE J, et al. Flammability limits and laminar flame speed of hydrogen-air mixtures at sub-atmospheric pressures [J]. International Journal of Hydrogen Energy, 2012, 37(22): 17580–17588. DOI: 10.1016/j.ijhydene.2012.05.049.
    [8] JIANG Y H, LI G X, LI F S, et al. Experimental investigation of correlation between cellular structure of the flame front and pressure [J]. Fuel, 2017, 199: 65–75. DOI: 10.1016/j.fuel.2017.02.036.
    [9] LI Y C, BI M S, ZHANG S L, et al. Dynamic couplings of hydrogen/air flame morphology and explosion pressure evolution in the spherical chamber [J]. International Journal of Hydrogen Energy, 2018, 43(4): 2503–2513. DOI: 10.1016/j.ijhydene.2017.12.044.
    [10] LI Y C, BI M S, LI B, et al. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels [J]. Fuel, 2018, 233: 269–282. DOI: 10.1016/j.fuel.2018.06.042.
    [11] LI H M, LI G X, SUN Z, et al. Experimental investigation on laminar burning velocities and flame intrinsic instabilities of lean and stoichiometric H2/CO/air mixtures at reduced, normal and elevated pressures [J]. Fuel, 2014, 135: 279–291. DOI: 10.1016/j.fuel.2014.06.074.
    [12] KIM W K, MOGI T, KUWANA K, et al. Self-similar propagation of expanding spherical flames in large scale gas explosions [J]. Proceedings of the Combustion Institute, 2015, 35(2): 2051–2058. DOI: 10.1016/j.proci.2014.08.023.
    [13] SUN Z Y, LIU F S, BAO X C, et al. Research on cellular instabilities in outwardly propagating spherical hydrogen-air flames [J]. International Journal of Hydrogen Energy, 2012, 37(9): 7889–7899. DOI: 10.1016/j.ijhydene.2012.02.011.
    [14] KATSUMI T, AIDA T, AIBA K, et al. Outward propagation velocity and acceleration characteristics in hydrogen-air deflagration [J]. International Journal of Hydrogen Energy, 2017, 42(11): 7360–7365. DOI: 10.1016/j.ijhydene.2016.06.165.
    [15] LI Y C, BI M S, GAO W. Theoretical pressure prediction of confined hydrogen explosion considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2019, 57: 320–326. DOI: 10.1016/j.jlp.2019.01.001.
    [16] GU X J, HAQ M Z, LAWES M, et al. Laminar burning velocity and Markstein lengths of methane-air mixtures [J]. Combustion and Flame, 2000, 121(1−2): 41–58. DOI: 10.1016/S0010-2180(99)00142-X.
    [17] METGHALCHI M, KECK J C. Laminar burning velocity of propane-air mixtures at high temperature and pressure [J]. Combustion and Flame, 1980, 38: 143–154. DOI: 10.1016/0010-2180(80)90046-2.
    [18] CASHDOLLAR K L, ZLOCHOWER I A, GREEN G M, et al. Flammability of methane, propane, and hydrogen gases [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3−5): 327–340. DOI: 10.1016/s0950-4230(99)00037-6.
    [19] GIERAS M, KLEMENS R. Experimental studies of explosions of methane-air mixtures in a constant volume chamber [J]. Combustion Science and Technology, 2009, 181(4): 641–653. DOI: 10.1080/00102200802665102.
    [20] MITTAL M. Explosion pressure measurement of methane-air mixtures in different sizes of confinement [J]. Journal of Loss Prevention in the Process Industries, 2017, 46: 200–208. DOI: 10.1016/j.jlp.2017.02.022.
  • 加载中
图(5)
计量
  • 文章访问数:  5101
  • HTML全文浏览量:  1507
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-04
  • 修回日期:  2019-02-21
  • 网络出版日期:  2020-01-25
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回