CL-20/HMX共晶冲击起爆模拟

刘海 李毅 李俊玲 马兆侠 陈鸿

刘海, 李毅, 李俊玲, 马兆侠, 陈鸿. CL-20/HMX共晶冲击起爆模拟[J]. 爆炸与冲击, 2020, 40(3): 032102. doi: 10.11883/bzycj-2019-0011
引用本文: 刘海, 李毅, 李俊玲, 马兆侠, 陈鸿. CL-20/HMX共晶冲击起爆模拟[J]. 爆炸与冲击, 2020, 40(3): 032102. doi: 10.11883/bzycj-2019-0011
LIU Hai, LI Yi, LI Junling, MA Zhaoxia, CHEN Hong. Simulations of shock initiation of CL-20/HMX co-crystal[J]. Explosion And Shock Waves, 2020, 40(3): 032102. doi: 10.11883/bzycj-2019-0011
Citation: LIU Hai, LI Yi, LI Junling, MA Zhaoxia, CHEN Hong. Simulations of shock initiation of CL-20/HMX co-crystal[J]. Explosion And Shock Waves, 2020, 40(3): 032102. doi: 10.11883/bzycj-2019-0011

CL-20/HMX共晶冲击起爆模拟

doi: 10.11883/bzycj-2019-0011
基金项目: 十三五装备预研领域基金(6140656020204)
详细信息
    作者简介:

    刘 海(1985- ),男,博士,助理研究员,liumy2016@163.com

  • 中图分类号: O389

Simulations of shock initiation of CL-20/HMX co-crystal

  • 摘要: 采用非平衡分子动力学方法模拟了CL-20/HMX共晶炸药冲击压缩和化学反应行为,获得了密度以及粒子速度的时空分布、冲击雨贡纽、冲击起爆压力、爆轰压力等数据,以及主要中间产物和稳定产物分布。模拟结果显示,共晶的初始分解路径是CL-20中N—NO2键断裂,主要稳定产物是N2、CO2和H2O。CL-20和HMX的分解速率随着冲击波速度的增加而增加,并且逐渐接近,但各冲击条件下CL-20分子的衰减速率均大于HMX。
  • 图  1  CL-20/HMX模型以及动量镜激发冲击波传播原理图

    Figure  1.  CL-20/HMX structure model and schematic diagram of the shock wave propagation induced by momentum mirror

    图  2  冲击波传播引发粒子速度和密度变化的x-t

    Figure  2.  x-t diagrams of particle velocity and density induced by shock wave propagation

    图  3  冲击波速度-粒子速度关系及p-V/V0雨贡纽

    Figure  3.  Shock wave velocity-particle velocity relation and p-V/V0 Hugoniot

    图  4  共晶中CL-20和HMX分子衰减曲线

    Figure  4.  Decay curves of CL-20 and HMX molecules in co-crystal

    图  5  诱导时间和衰减速率及冲击到达右端自由面时主要产物的数量统计

    Figure  5.  Induction time and decay rate under different shock conditions and quantitative statistics of the main products when the shock wave reaches the free surface

    图  6  冲击波传播的序列图像

    Figure  6.  Sequence images of shock wave propagation

    表  1  各冲击条件下共晶中CL-20和HMX诱导时间和衰减速率比较

    Table  1.   Comparison of induction time and decay rate of CL-20 and HMX in co-crystal under different shock conditions

    up /(km·s−1)τCL-20/psτHMX/psrd, CL-20rd, HMXrd, CL-20/rd, HMX
    1.50.800 02.100 00.004 00.001 13.636 4
    2.00.254 00.800 00.016 00.002 36.956 5
    2.50.100 00.400 00.062 00.031 02.000 0
    3.00.052 00.300 00.160 00.114 01.403 5
    3.50.049 00.160 00.234 00.205 01.141 5
    4.00.001 00.150 00.289 00.278 01.039 6
    下载: 导出CSV
  • [1] BOLTON O, SIMKE L R, PAGORIA P F, et al. High power explosive with good sensitivity: a 2∶1 cocrystal of CL-20∶HMX [J]. Crystal Growth & Design, 2012, 12(9): 4311–4314.
    [2] SUN T, XIAO J J, LIU Q, et al. Comparative study on structure, energetic and mechanical properties of a ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulation [J]. Journal of Materials Chemistry A, 2014, 2(34): 13898–13904. DOI: 10.1039/C4TA01150C.
    [3] LIU Z, WU Q, ZHU W, et al. Insights into the roles of two constituents CL-20 and HMX in the CL-20: HMX cocrystal at high pressure: a DFT-D study [J]. RSC Advances, 2015, 5(43): 34216–34225. DOI: 10.1039/C5RA01829C.
    [4] XUE X, MA Y, ZENG Q, et al. Initial decay mechanism of the heated CL-20/HMX cocrystal: a case of the cocrystal mediating the thermal stability of the two pure components [J]. The Journal of Physical Chemistry C, 2017, 121(9): 4899–4908. DOI: 10.1021/acs.jpcc.7b00698.
    [5] DOBLAS D, ROSENTHAL M, BURGHAMMER M, et al. Smart energetic nanosized co-crystals: exploring fast structure formation and decomposition [J]. Crystal Growth & Design, 2015, 16(1): 432–439.
    [6] OKOVYTYY S, KHOLOD Y, QASIM M, et al. The mechanism of unimolecular decomposition of 2, 4, 6, 8, 10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane: a computational DFT study [J]. The Journal of Physical Chemistry A, 2005, 109(12): 2964–2970. DOI: 10.1021/jp045292v.
    [7] ISAYEV O, GORB L, QASIM M, et al. Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20 [J]. The Journal of Physical Chemistry B, 2008, 112(35): 11005–11013. DOI: 10.1021/jp804765m.
    [8] WANG F, CHEN L, GENG D, et al. Effect of density on the thermal decomposition mechanism of ε-CL-20: a ReaxFF reactive molecular dynamics simulation study [J]. Physical Chemistry Chemical Physics, 2018, 20(35): 22600–22609. DOI: 10.1039/C8CP03010C.
    [9] WANG F, CHEN L, GENG D, et al. Thermal decomposition mechanism of CL-20 at different temperatures by ReaxFF reactive molecular dynamics simulations [J]. The Journal of Physical Chemistry A, 2018, 122(16): 3971–3979. DOI: 10.1021/acs.jpca.8b01256.
    [10] XUE X, WEN Y, ZHANG C. Early decay mechanism of shocked ε-CL-20: a molecular dynamics simulation study [J]. The Journal of Physical Chemistry C, 2016, 120(38): 21169–21177. DOI: 10.1021/acs.jpcc.6b05228.
    [11] WEN Y, XUE X, ZHOU X, et al. Twin induced sensitivity enhancement of HMX versus shock: a molecular reactive force field simulation [J]. The Journal of Physical Chemistry C, 2013, 117(46): 24368–24374. DOI: 10.1021/jp4072795.
    [12] GE N N, WEI Y K, JI G F, et al. Initial decomposition of the condensed-phase β-HMX under shock waves: molecular dynamics simulations [J]. The Journal of Physical Chemistry B, 2012, 116(46): 13696–13704. DOI: 10.1021/jp309120t.
    [13] GE N N, WEI Y K, SONG Z F, et al. Anisotropic responses and initial decomposition of condensed-phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multiscale shock technique [J]. The Journal of Physical Chemistry B, 2014, 118(29): 8691–8699. DOI: 10.1021/jp502432g.
    [14] LIU L, LIU Y, ZYBIN S V, et al. ReaxFF-lg: Correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials [J]. The Journal of Physical Chemistry A, 2011, 115(40): 11016–11022. DOI: 10.1021/jp201599t.
    [15] NOMURA K, KALIA R K, NAKANO A, et al. Dynamic transition in the structure of an energetic crystal during chemical reactions at shock front prior to detonation [J]. Physical review letters, 2007, 99(14): 148303. DOI: 10.1103/PhysRevLett.99.148303.
    [16] BUDZIEN J, THOMPSON A P, ZYBIN S V. Reactive molecular dynamics simulations of shock through a single crystal of pentaerythritoltetranitrate [J]. The Journal of Physical Chemistry B, 2009, 113(40): 13142–13151. DOI: 10.1021/jp9016695.
    [17] LI Y, KALIA R K, NAKANO A, et al. Multistage reaction pathways in detonating high explosives [J]. Applied Physics Letters, 2014, 105(20): 204103. DOI: 10.1063/1.4902128.
    [18] HE L, SEWELL T D, THOMPSON D L. Molecular dynamics simulations of shock waves in oriented nitromethane single crystals [J]. The Journal of chemical physics, 2011, 134(12): 124506. DOI: 10.1063/1.3561397.
    [19] REED E J, FRIED L E, HENSHAW W D, et al. Analysis of simulation technique for steady shock waves in materials with analytical equations of state [J]. Physical Review E, 2006, 74(5): 056706. DOI: 10.1103/PhysRevE.74.056706.
    [20] REED E J, MAITI A, FRIED L E. Anomalous sound propagation and slow kinetics in dynamically compressed amorphous carbon [J]. Physical Review E, 2010, 81(1): 016607. DOI: 10.1103/PhysRevE.81.016607.
    [21] ZHANG L, ZYBIN S V, VAN DUIN A C T, et al. Modeling high rate impact sensitivity of perfect RDX and HMX crystals by ReaxFF reactive dynamics [J]. Journal of Energetic Materials, 2010, 28(S1): 92–127.
    [22] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of computational physics, 1995, 117(1): 1–19. DOI: 10.1006/jcph.1995.1039.
    [23] GUMP J C, PEIRIS S M. Phase transitions and isothermal equations of state of epsilon hexanitrohexaazaisowurtzitane (CL-20) [J]. Journal of Applied Physics, 2008, 104(8): 083509. DOI: 10.1063/1.2990066.
    [24] BRUNDAGE A L. EOS development and numerical modeling of CL-20 compaction [J]. AIP Conference Proceedings, 2009, 1195(1): 1365−1368.
    [25] MARSH S P. LASL shock Hugoniot data [M]. California: University of California Press, 1980: 595.
    [26] 刘海, 李毅, 马兆侠, 等. 定常冲击波作用下六硝基六氮杂异伍兹烷(CL-20)/奥克托今(HMX) 含能共晶初始分解机理研究 [J]. 物理化学学报, 2019, 35(8): 858–867. DOI: 10.3866/PKU.WHXB201812011.

    LIU H, LI Y, MA Z X, et al. Study on the initial decomposition mechanism of energetic co-crystal 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaiso-wurtzitane (CL-20) /1,3,5,7-tetranitro-1,3,5,7-tetrazacy-clooctane (HMX) under a steady shock wave [J]. Acta Physico-Chimica Sinica, 2019, 35(8): 858–867. DOI: 10.3866/PKU.WHXB201812011.
    [27] 李维新. 一维不定常流与冲击波[M]. 2版. 北京: 国防工业出版社, 2003: 212−215.
    [28] ZHANG L, ZYBIN S V, VAN DUIN A C T, et al. Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations [J]. The Journal of Physical Chemistry A, 2009, 113(40): 10619–10640. DOI: 10.1021/jp901353a.
    [29] FURMAN D, KOSLOFF R, DUBNIKOVA F, et al. Decomposition of condensed phase energetic materials: Interplay between uni-and bimolecular mechanisms [J]. Journal of the American Chemical Society, 2014, 136(11): 4192–4200. DOI: 10.1021/ja410020f.
    [30] ZHANG X Q, CHEN X R, KALIAMURTHI S, et al. Initial decomposition of the co-crystal of CL-20/TNT: sensitivity decrease under shock loading [J]. The Journal of Physical Chemistry C, 2018, 122(42): 24270–24278. DOI: 10.1021/acs.jpcc.8b06953.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  5180
  • HTML全文浏览量:  1555
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-06
  • 修回日期:  2019-11-27
  • 网络出版日期:  2020-02-25
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回