激光选区熔化增材制造GP1不锈钢动态拉伸力学响应与层裂破坏

史同亚 刘东升 陈伟 谢普初 汪小锋 王永刚

史同亚, 刘东升, 陈伟, 谢普初, 汪小锋, 王永刚. 激光选区熔化增材制造GP1不锈钢动态拉伸力学响应与层裂破坏[J]. 爆炸与冲击, 2019, 39(7): 073101. doi: 10.11883/bzycj-2019-0015
引用本文: 史同亚, 刘东升, 陈伟, 谢普初, 汪小锋, 王永刚. 激光选区熔化增材制造GP1不锈钢动态拉伸力学响应与层裂破坏[J]. 爆炸与冲击, 2019, 39(7): 073101. doi: 10.11883/bzycj-2019-0015
SHI Tongya, LIU Dongsheng, CHEN Wei, XIE Puchu, WANG Xiaofeng, WANG Yonggang. Dynamic tensile behavior and spall fracture of GP1 stainless steel processed by selective laser melting[J]. Explosion And Shock Waves, 2019, 39(7): 073101. doi: 10.11883/bzycj-2019-0015
Citation: SHI Tongya, LIU Dongsheng, CHEN Wei, XIE Puchu, WANG Xiaofeng, WANG Yonggang. Dynamic tensile behavior and spall fracture of GP1 stainless steel processed by selective laser melting[J]. Explosion And Shock Waves, 2019, 39(7): 073101. doi: 10.11883/bzycj-2019-0015

激光选区熔化增材制造GP1不锈钢动态拉伸力学响应与层裂破坏

doi: 10.11883/bzycj-2019-0015
基金项目: 科学挑战专题(TZ2018001)
详细信息
    作者简介:

    史同亚(1992- ),男,硕士,819330522@qq.com

    通讯作者:

    王永刚(1976- ),男,博士,教授,wangyonggang@nbu.edu.cn

  • 中图分类号: O347.3

Dynamic tensile behavior and spall fracture of GP1 stainless steel processed by selective laser melting

  • 摘要: 采用选择性激光熔化增材制造技术,制备了GP1不锈钢单轴拉伸板条试样和层裂圆片试样,并对材料微观结构进行了表征。借助Zwick-HTM5020 高速拉伸试验机,并结合数字图像相关性全场应变测量技术,开展了增材制造GP1不锈钢材料的轴向拉伸力学性能实验研究,得到了不同应变率下材料的拉伸应力-应变曲线,结果显示:(1) GP1不锈钢流动应力具有比较显著的应变强化效应;(2)通过回收试样的电子背散射衍射表征,发现GP1不锈钢在拉伸变形过程中会发生奥氏体与马氏体之间的相变;(3) GP1不锈钢的屈服应力随着应变率呈幂指数增大,断裂应变在中低应变率下保持不变,但在高应变率下则显著减小。采用一级轻气炮实验装置和激光干涉粒子速度测量技术,开展了增材制造GP1不锈钢的层裂实验,发现GP1不锈钢的层裂强度随着飞片撞击速度增大而减小。单轴拉伸试样断口和层裂试样断口的显微分析结果表明:随着应变率增大,单轴拉伸断裂模式和断裂机理都发生了转变;层裂损伤易成核于激光熔池边界线的交汇处,断口韧窝形貌明显区别于单向拉伸断口。
  • 图  1  GP1不锈钢粉末扫描电子显微镜形貌

    Figure  1.  Scanning electron microscope morphology of GP1 stainless steel powder

    图  2  粒径分布图

    Figure  2.  Powder size distribution for GP1 stainless steel powder

    图  3  试样设计尺寸、成型后试样照片以及成型工艺过程示意图

    Figure  3.  Sample design dimension, sample photograph after moulding and schematic diagram of moulding process

    图  4  激光选区熔化法制备的GP1不锈钢光学显微结构

    Figure  4.  Optical images of GP1 stainless steel processed by selective laser melting

    图  5  激光选区熔化法制备的GP1不锈钢显微结构的电子背散射衍射表征

    Figure  5.  Electron backscattered diffraction images of GP1 stainless steel processed by selective laser melting

    图  6  HTM-5020高速拉伸材料试验机、试样夹具及试样散斑图

    Figure  6.  HTM-5020 high-speed machine, sample fixture, and speckle image of specimen

    图  7  应变片粘贴在GP1不锈钢试样的位置

    Figure  7.  Position of strain gauge pasted on GP1 stainless steel specimen

    图  8  层裂实验装置示意图

    Figure  8.  Schematics of the setup for spallation experiment

    图  9  闭环控制时力与速度时程曲线

    Figure  9.  Force and velocity profiles under closed loading control mode

    图  10  不同应变率下的加载速度时程曲线

    Figure  10.  Velocity profiles at different strain rates

    图  11  不同应变率下的力时程曲线

    Figure  11.  Force profiles at different strain rates

    图  12  不同时刻的GP1不锈钢试样标距段应变分布云图(应变率为10−2 s−1)

    Figure  12.  Strain distributions of GP1 stainless sample at different times (strain rate is 10−2 s−1)

    图  13  不同应变率下GP1不锈钢的真实应力-应变曲线

    Figure  13.  True stress-true strain curves of GP1 stainless steel at different strain rates

    图  14  GP1不锈钢中奥氏体和马氏体体积分数电子背散射衍射表征(黄色代表奥氏体,红色代表马氏体)

    Figure  14.  Electron backscattered diffraction characterizations of volume fraction for austenite and martensite in GP1 stainless steel (yellow represents austenite, red represents martensite)

    图  15  GP1不锈钢屈服应力随着应变率的变化曲线

    Figure  15.  Yield stress variation of GP1 stainless steel with strain rate

    图  16  不同初始速度下GP1不锈钢的自由面速度剖面

    Figure  16.  Free-surface velocity profiles of GP1 stainless steel at different initial velocities

    图  17  不同应变率下GP1不锈钢的宏观断口以及微观形貌

    Figure  17.  Macro-fracture and micro-morphology of GP1 stainless steel at different strain rates

    图  18  不同初始速度下的层裂剖面

    Figure  18.  Spall profiles at different initial velocities

    图  19  初始层裂的微观金相

    Figure  19.  Microscopic metallographic phase of initial spallation

    图  20  GP1不锈钢层裂断口微观形貌

    Figure  20.  Micrographs of ductile fractures in GP1 stainless steel spallation

    表  1  一维应变平板撞击实验结果

    Table  1.   Results of one-dimensional strain plane impact test

    实验编号初始速度/(m·s−1)Δu/(m·s−1)σHEL/GPaσy/GPaσs/GPa
    1250176.231.781.013.91
    2270174.971.791.023.88
    3350169.991.851.053.76
    下载: 导出CSV
  • [1] SAMES W J, LIST F A, PANALA S, et al. The metallurgy and processing science of metal additive manufacturing [J]. International Materials Reviews, 2016, 61(5): 1–46. DOI: 10.1080/09506608.2015.1116649.
    [2] ZHAI Y, LADOS D A, LAGOY J L. Additive manufacturing: making imagination the major limitation [J]. Journal of metals, 2014, 66(5): 808–816. DOI: 10.1007/s11837-014-0886-2.
    [3] YADOLLAHI A, SHAMSAEI N. Additive manufacturing of fatigue resistant materials: challenges and opportunities [J]. International Journal of Fatigue, 2017, 98(1): 14–31. DOI: 10.1016/j.ijfatigue.2017.01.001.
    [4] 王沛, 黄正华, 戚文军, 等. 基于SLM技术的3D打印工艺参数对316不锈钢组织缺陷的影响 [J]. 机械制造文摘: 焊接分册, 2016, 1(2): 2–7.

    WANG Pei, HUANG Zhenghua, QI Wenjun, et al. Effects of 3D printing process parameters based on SLM technology on structural defects of 316 stainless steel [J]. Mechanical Manufacturing Abstracts: Welding Brochures, 2016, 1(2): 2–7.
    [5] 吕豪, 杨志斌, 王鑫, 等. 激光增材制造GH4099合金热处理后的显微组织及拉伸性能 [J]. 中国激光, 2018, 45(10): 3–9. DOI: 10.3788/cjl.201845.1002003.

    LÜ Hao, YANG Zhibin, WANG Xin, et al. Microstructure and tensile properties of GH4099 alloy fabricated by laser additive manufacturing after heat treatment [J]. Chinese Journal of Lasers, 2018, 45(10): 3–9. DOI: 10.3788/cjl.201845.1002003.
    [6] 尹燕, 刘鹏宇. 路超., et al 选区激光熔化成形316L不锈钢微观组织及拉伸性能分析 [J]. 焊接学报, 2018, 39(8): 77–81. DOI: 10.12073/j.hjxb.2018390205.

    YIN Yan, LIU Pengyu, LU Chao, et al. Microstructure and tensile properties of selective laser melting forming 316L stainless steel [J]. Transactions of the China Welding Institution, 2018, 39(8): 77–81. DOI: 10.12073/j.hjxb.2018390205.
    [7] 王志会, 王华明, 刘栋. 激光增材制造AF1410超高强度钢组织与力学性能研究 [J]. 中国激光, 2016, 43(4): 59–65. DOI: 10.3788/CJL201643.0403001.

    WANG Zhihui, WANG Huaming, LIU Dong. Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique [J]. Chinese Journal of Lasers, 2016, 43(4): 59–65. DOI: 10.3788/CJL201643.0403001.
    [8] YADOLLAHI A, SHAMSAEI N, THOMPSONS M, et al. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel [J]. International Journal of Fatigue, 2017, 94(11): 218–235. DOI: 10.1016/j.ijfatigue.2016.03.014.
    [9] SURYAWANSHI J. Mechanical behavior of selective laser melted 316L stainless steels [J]. Materials Science and Engineering: A, 2017, 696(7): 113–121. DOI: 10.1016/j.msea.2017.04.058.
    [10] WANG Y M, VOISIN T, MCKEOWN J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nature Materials, 2017, 17(1): 63–71. DOI: 10.1038/nmat5021.
    [11] YU S, HEBERT R J, MARK A. Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel [J]. Materials and Design, 2018, 156(10): 429–440. DOI: 10.1016/j.matdes.2018.07.015.
    [12] GRAY G T, LIVESCU V, RIGG P A, et al. Structure/property (constitutive and spallation response) of additive manufactured 316L stainless steel [J]. Acta Materialia, 2017, 138(10): 140–149. DOI: 10.1016/j.actamat.2017.07.045.
    [13] SONG B, NISHIDA E, SANBORN B, et al. Compressive and tensile stress-strain responses of additively manufactured (AM) 304L stainless steel at high strain rates [J]. Journal of Dynamic Behavior of Materials, 2017, 3(3): 412–425. DOI: 10.1007/s40870-017-0122-6.
    [14] BRANDON M W, BRAHMANNADA P, ANDELLE K, et al. High strain rate compressive deformation behavior of an additively manufactured stainless steel [J]. Additive Manufacturing, 2018, 9(24): 432–439. DOI: 1010.1016/j.addma.2018.09.16.
    [15] 丁利, 李怀学, 王玉岱, 等. 热处理对激光选区熔化成形316不锈钢组织与拉伸性能的影响 [J]. 中国激光, 2015, 42(4): 187–193. DOI: 10.3788/CJL201542.0406003.

    DING Li, LI Huaixue, WANG Yudai, et al. Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting [J]. Chinese Journal of Lasers, 2015, 42(4): 187–193. DOI: 10.3788/CJL201542.0406003.
    [16] WOOD P, SCHLEY C A, WILLIAMS M A, et al. A method to calibrate a specimen with strain gauges to measure force over the full-force range in high rate testing [C] // SCHLEY C A. DYMAT 2009: 9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading. Belgium: Experimental Techniques?, 2009: 265−273. DOI: 10.1051/dymat/2009036.
    [17] 申海艇, 蒋招绣, 王贝壳, 等. 基于超高速相机的数字图像相关性全场应变分析在SHTB实验中的应用 [J]. 爆炸与冲击, 2017, 37(1): 15–20. DOI: 10.11883/1001-1455(2017)01-0015-06.

    SHEN Haiting, JIANG Zhaoxiu, WANG Beike, et al. Full field strain measurement in split Hopkinson tension bar experiments by using ultra-high-speed camera with digital image correlation [J]. Explosion and Shock Waves, 2017, 37(1): 15–20. DOI: 10.11883/1001-1455(2017)01-0015-06.
    [18] PIERRON F, SUTTON M A, TIWARI V. Ultra high speed DIC and virtual fields method analysis of a three point bending impact test on an aluminum bar [J]. Experimental Mechanics, 2011, 51(4): 537–563. DOI: 10.1007/s11340-010-9402-y.
    [19] 王楠, 李恩普, 汤忠斌, 等. 二维数字图像相关方法的拉伸实验误差分析 [J]. 光学仪器, 2012, 34(3): 5–12. DOI: 10.3969/j.issn.1005-5630.2012.03.002.

    WANG Nan, LI Enpu, TANG Zhongbin, et al. An investigation of the experimental error of 2-D DIC method applied to tensile strain measurement [J]. Optical Instruments, 2012, 34(3): 5–12. DOI: 10.3969/j.issn.1005-5630.2012.03.002.
    [20] CHEVRIER P, KLEPACZKO J R. Spall fracture: mechanical and micro-structural aspects [J]. Engineering Fracture Mechanics, 1999, 63(3): 273–294. DOI: 10.1016/S0013-7944(99)00022-3.
    [21] 张万甲, 曾元金. 不锈钢(00Cr18Ni9)动态累积损伤研究 [J]. 爆炸与冲击, 1999, 19(4): 309–314. doi: 10.3321/j.issn:1001-1455.1999.04.004

    ZHANG Wanjia, ZENG Yuanjin. Study on the dynamic accumulation-damage for the stainless steel (00Cr18Ni9) [J]. Explosion and Shock Waves, 1999, 19(4): 309–314. doi: 10.3321/j.issn:1001-1455.1999.04.004
    [22] WENG J, TAN H, WANG X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution [J]. Applied Physics Letters, 2006, 89(11): 111101-0. DOI: 10.1063/1.2335948.
    [23] CLAUSEN B, BROWN D W, CARPENTER J S, et al. Deformation behavior of additively manufactured GP1 stainless steel [J]. Materials Science and Engineering: A, 2017, 696(4): 331–340. DOI: 10.1016/j.msea.2017.04.081.
    [24] 刘超, 王磊, 刘杨. 应变速率对Q&P钢拉伸变形行为的影响 [J]. 特钢技术, 2012, 18(3): 18–22. DOI: 10.3969/j.issn.1674-0971.2012.03.007.

    LIU Chao, WANG Lei, LIU Yang. Effect of strain rates on tensile deformation behavior of quenching and partitioning steel [J]. Special Steel Technology, 2012, 18(3): 18–22. DOI: 10.3969/j.issn.1674-0971.2012.03.007.
    [25] COWPER G R, SYMONDS P S. Strain hardening and strain rate effects in the impact loading of cantilever beams [R] // Applied Mathematics Report. Brown University, 1958.
    [26] 蒋招绣, 辛铭之, 王永刚. 高强铝合金的动态拉伸断裂行为实验研究 [J]. 固体力学学报, 2014, 35(6): 552–558. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2014.06.007.

    JIANG Zhaoxiu, XIN Mingzhi, WANG Yonggang. Experimental study on dynamic tensile fracture of aluminum alloy [J]. Chinese Journal of Solid Mechanics, 2014, 35(6): 552–558. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2014.06.007.
    [27] 彭辉, 李平, 裴晓阳, 等. 平面冲击下铜的拉伸应变率相关特性研究 [J]. 物理学报, 2014, 63(19): 281–287. DOI: 10.7498/aps.63.196202.

    PENG Hui, LI Ping, PEI Xiaoyang, et al. Rate-dependent characteristics of copper under plate impact [J]. Acta Physica Sinica, 2014, 63(19): 281–287. DOI: 10.7498/aps.63.196202.
    [28] ANTOUN T, SEAMAN L, CURRAN D R, et al. Spall fracture [M]. New York, USA: Springer, 2003: 90−92. DOI: 10.1007/b97226.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  5790
  • HTML全文浏览量:  1904
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-16
  • 修回日期:  2019-03-25
  • 网络出版日期:  2019-06-25
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回