Peridynamic simulation of damage of ship composite structure under fragments impact
-
摘要: 基于近场动力学方法,综合分析了破片的速度、层合板的铺层方式、加筋板的筋条尺寸和破片相对筋条的冲击位置对结构损伤模式和破片剩余速度的影响。结果显示:高速破片冲击作用下,层合板会发生侵彻和穿透现象,层合板的损伤模式以基体损伤为主,且随着破片冲击速度的增大,板上下表面的损伤区域呈现出一种先增大后减小的趋势;高速破片冲击作用下,层合的板损伤扩展方向和纤维铺设方向有关,对于纤维铺层方向相同的层合板,其上下表面的损伤扩展方向一般与纤维方向相同;加筋板通过增加少量质量可以获得比层合板更好的抗破片冲击性能,且加筋板的筋条尺寸和破片相对筋条的冲击位置对加筋板的损伤具有明显影响。Abstract: Based on the method of near-field dynamics, the effects of fragment velocity, ply mode of laminated plate, rib size of stiffened plate and impact position of fragment relative to rib on the damage mode and residual velocity of fragment are analyzed. The results show that: under the impact of high-speed fragments, the laminate will be penetrated and penetrated. The damage mode of the laminate is mainly matrix damage. With the increase of the impact speed of fragments, the damage area of the upper and lower surfaces of the laminate presents a trend of increasing first and then decreasing. Under the impact of high-speed fragments, the damage expansion direction of the laminate is related to the direction of fiber laying. For the laminates with the same fiber ply direction, the damage propagation direction of the upper and lower surfaces is generally the same as that of the fiber; the stiffened plate can obtain better fragment impact resistance than the laminated plate by increasing a small amount of mass, and the size of the stiffened plate and the impact position of the fragments relative to the stiffeners have a significant impact on the damage of the stiffened plate.
-
Key words:
- composite materials /
- high-speed fragments /
- peridynamics /
- impact damage
-
表 1 CCF300/10128H材料属性
Table 1. Thematerial properties of CCF300/10128H
E1/GPa E2/GPa E3/GPa ν12 ν13 ν23 G12/GPa G13/GPa G23/GPa 125 7.6 7.6 0.34 0.34 0.46 4.32 4.32 3.23 Xt/MPa Xc/MPa Yt/MPa Yc/MPa S12 S23 ρ/(kg∙m−3) 2 200 1 100 50 200 60 60 1 678 注:E3为沿复合材料层合板堆叠方向的弹性模量,ν12、ν12、ν12分别为对应E1、E2、E3方向上的泊松比,G12、G13、G23为对应E1、E2、E3,方向上的剪切模量,S12、S23分别为面内和层间的剪切强度,ρ为复合材料板密度。 表 2 初始速度不同的破片剩余速度大小
Table 2. Residual velocities of fragments with different initial velocities
编号 初始速度/(km∙s−1) 剩余速度/(km∙s−1) 损失速度/(km∙s−1) 耗散能量/J 1 0.5 0.336 0.164 673.1 2 1.0 0.724 0.276 1 906.8 3 1.5 1.098 0.402 4 040.1 4 2.0 1.465 0.535 7 144.9 表 3 不同铺层的层合板对应的破片的剩余速度
Table 3. Residual velocity of fragments with different layup configuration
铺层 [0]20 [45]20 [−45]20 [90]20 [45/0/−45/0/90]2S [90/0/45/0/−45]2S [0/45/0/−45/90]2S 剩余速度/(m∙s−1) 574.69 578.06 577.93 574.76 573.01 573.69 573.84 -
王晓强, 虢忠仁, 宫平, 等. 抗弹复合材料在舰船防护上的应用研究 [J]. 工程塑料应用, 2014, 42(11): 143–146. DOI: 10.3969/j.issn.1001-3539.2014.11.69.WANG X Q, GUO Z R, GONG P, et al. Application research of bulletproof composites in warship protection [J]. Engineering Plastics Application, 2014, 42(11): 143–146. DOI: 10.3969/j.issn.1001-3539.2014.11.69. 杨光松. 损伤力学与复合材料损伤[M]. 北京: 国防工业出版社, 1995. DOLBOW J, BELYTSCHKO T. Numerical integration of the Galerkin weak form in meshfree methods [J]. Computational Mechanics, 1999, 23(3): 219–230. DOI: 10.1007/s004660050403. SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209. DOI: 10.1016/S0022-5096(99)00029-0. SILLING SA, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics [J]. Computers and Structures, 2005, 83(17): 1526–1535. DOI: 10.1016/j.compstruc.2004.11.026. 胡祎乐, 余音, 汪海. 基于近场动力学的复合材料层压板建模和渐进损伤分析 [C] // 全国复合材料学术会议, 2012. 万铖, 金平, 谭晓明, 等. 基于ABAQUS的复合材料低速冲击损伤分析 [J]. 装备环境工程, 2014, 11(5): 38–42. DOI: 10.7643/issn.1672-9242.2014.05.008.WAN C, JIN P, TAN XM, et al. Analysis for the damage of composites under low-velocity impact based on ABAQUS [J]. Equipment Environmental Engineering, 2014, 11(5): 38–42. DOI: 10.7643/issn.1672-9242.2014.05.008.