Effect of damage evolution on the fragmentation process of ductile metals
-
摘要: 固体在冲击拉伸载荷作用下会断裂成多个碎片,基于线性内聚力断裂假设的Mott-Grady模型能较好地预测碎裂过程所产生的平均碎片尺度的下限。然而实际上,韧性金属的损伤演化是多元化的,为此通过数值模拟方法研究了不同损伤演化规律对韧性碎裂过程的影响。利用ABAQUS/Explicit动态有限元软件数值再现了韧性金属杆(45钢)在高应变率下拉伸碎裂的过程,分析了线性和非线性损伤演化对韧性碎裂过程的影响规律。结果表明:损伤演化规律对韧性金属的碎裂过程具有显著影响,非线性指标α越大,碎裂过程产生的碎片数越少;Grady-Kipp碎裂公式仍能在一定范围内预测韧性碎裂过程中产生的碎片尺寸;当非线性指标α远大于零时,在较低冲击拉伸载荷作用下,数值模拟结果和Grady-Kipp模型预测值偏差较大,随着应变率增大,数值模拟结果与Grady-Kipp模型预测值吻合较好。
-
关键词:
- 韧性碎裂 /
- 损伤演化 /
- Grady-Kipp公式 /
- 碎片尺寸
Abstract: Solids will be broken into multiple fragments under dynamic tension loadings. The Mott-Grady model based on linear cohesive fracture can predict the lower limits of average fragment size during fragmentation process. However, the damage evolution of ductile materials is diversified. In this paper, the ductile fracture processes influenced by different damage evolutions were studied by numerical simulation. Using ABAQUS/Explicit dynamic finite element, we reproduced the tensile fracture process of ductile metal bar (45 steel) at high strain rates. The effects of linear/nonlinear damage evolutions on ductile fracture process were analyzed. The numerical results show that the damage evolution law has a significant influence on the fragmentation process of ductile metals. As the nonlinear parameter increases, the number of fragments decreases during fragmentation process. The Grady-Kipp formula can still reasonably predict the lower limits of the ductile fragment sizes in a certain range. When the non-linear index α was far greater than zero, there are conspicuous deviations between the numerical experiments and the Grady-Kipp model under the low impact loading. With increasing strain rate, the results by the numerical simulations are in agreement with the ones by the Grady-Kipp theoretical model.-
Key words:
- ductile fragmentation /
- damage evolution /
- Grady-Kipp formula /
- fragment size
-
表 1 45钢材料的Johnson-Cook本构模型的物理参数
Table 1. Material parameters of the 45 steel
Material ρ/(kg·m−3) E/GPa ν c/(J·kg−1·K−1) $T_ {\rm{t} }$/K $T_ {\rm{m} }$/K Gc/(kN·m−1) 45 steel 7.8×103 203 0.29 447 298 1 765 25 Material m $\beta $ $\dot \varepsilon $/s−1 A/MPa B/MPa C n 45 steel 1.06 0.9 1 507 320 0.064 0.28 表 2 非线性损伤演化下内聚力断裂参数(断裂能Gc=25 kN/m)
Table 2. The cohesive parameters under nonlinear damage evolutions (Gc=25 kN/m)
$\alpha $ $u_{\rm{f}}^{{\rm{pl}}}$/μm $\alpha $ $u_{\rm{f}}^{{\rm{pl}}}$/μm $\alpha $ $u_{\rm{f}}^{{\rm{pl}}}$/μm $\alpha $ $u_{\rm{f}}^{{\rm{pl}}}$/μm −10.0 24.1 −5.0 26.9 −1.0 37.3 −0.1 42.7 0.1 44.2 1.0 52.0 5.0 112.0 10.0 217.0 -
[1] GRADY D E, BENSON D A. Fragmentation of metal rings by electromagnetic loading [J]. Experimental Mechanics, 1983, 23(4): 393–400. DOI: 10.1007/BF02330054. [2] GRADY D E, KIPP M E. Experimental measurement of dynamic failure and fragmentation properties of metals [J]. International Journal of Solids and Structures, 1995, 32(17−18): 2779–2791. DOI: 10.1016/ 0020-7683(94)00297-a. [3] GRADY D E, KIPP M E. Fragmentation properties of metals [J]. International Journal of Impact Engineering, 1997, 20(1−5): 293–308. DOI: 10.1016/ S0734-743X(97)87502-1. [4] MOTT N F. A theory of the fragmentation of shells and bombs [M]//GRADY D. Fragmentation of Rings and Shells. Berlin, Germany: Springer, 2006: 243–294. DOI: 10.1007/978-3-540-27145-1_11 [5] MOTT N F. Fragmentation of shell cases [J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1947, 189(1018): 300–308. DOI: 10.1098/rspa.1947.0042. [6] KIPP M E, GRADY D E. Dynamic fracture growth and interaction in one dimension [J]. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399–415. DOI: 10.1016/0022-5096(85)90036-5. [7] GRADY D E. Fragmentation of rings and shells: the legacy of N. F. Mott [M]. Berlin: Springer, 2006. DOI: 10.1007/b138675 [8] ZHANG H, RAVI-CHANDAR K. Dynamic fragmentation of ductile materials [J]. Journal of Physics D: Applied Physics, 2009, 42(21): 214010. DOI: 10.1088/0022-3727/42/21/214010. [9] LEVY S, MOLINARI J F, VICARI I I, DAVISON A C. Dynamic fragmentation of a ring: predictable fragment mass distributions [J]. Physical Review E, 2010, 82(6): 066105. DOI: 10.1103/PhysRevE.82.066105. [10] 陈磊, 周风华, 汤铁钢. 韧性金属圆环高速膨胀碎裂过程的有限元模拟 [J]. 力学学报, 2011, 43(5): 861–870. DOI: 10.6052/0459-1879-2011-5-lxxb2010-675.CHEN L, ZHOU F H, TANG T G. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 861–870. DOI: 10.6052/0459-1879-2011-5-lxxb2010-675. [11] 郑宇轩, 胡时胜, 周风华. 韧性材料的高应变率拉伸碎裂过程及材料参数影响 [J]. 固体力学学报, 2012, 33(4): 358–369. DOI: 10.3969/j.issn.0254-7805.2012.04.003.ZHENG Y X, HU S S, ZHOU F H. High strain rate tensile fragmentation process of ductile materials and the effects of material parameters [J]. Chinese Journal of Solid Mechanics, 2012, 33(4): 358–369. DOI: 10.3969/j.issn.0254-7805.2012.04.003. [12] GAO X, WANG T, KIM J. On ductile fracture initiation toughness: effects of void volume fraction, void shape and void distribution [J]. International Journal of Solids and Structures, 2005, 42(18−19): 5097–5117. DOI: 10.1016/j.ijsolstr.2005.02.028. [13] 周风华, 郭丽娜, 王礼立. 脆性固体碎裂过程中的最快卸载特性 [J]. 固体力学学报, 2010, 31(3): 286–295. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009.ZHOU F H, GUO L N, WNAG L L. The rapidest unloading characteristics in the fragmentation process of brittle solids [J]. Chinese Journal of Solid Mechanics, 2010, 31(3): 286–295. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009. [14] GILLES D, JORIS V, DON-PIERRE Z, et al. Stress release waves in plastic solids [J]. Journal of the Mechanics and Physics of Solids, 2019, 128: 21–31. DOI: 10.1016/j.jmps.2019.03.021. [15] 郑宇轩, 周风华, 余同希. 动态碎裂过程中的最快速卸载现象 [J]. 中国科学: 技术科学, 2016, 46(4): 332–338. DOI: 10.1360/N092016-00012.ZHENG Y X, ZHOU F H, YU T X. The rapidest unloading in dynamic fragmentation events [J]. Scientia Sinica Technologica, 2016, 46(4): 332–338. DOI: 10.1360/N092016-00012. [16] 郑宇轩, 周风华, 胡时胜, 等. 固体的冲击拉伸碎裂 [J]. 力学进展, 2016, 46(12): 506–540. DOI: 10.6052/1000-0992-16-004.ZHENG Y X, ZHOU F H, HU S S, et al. Fragmentation of solids under impact tension [J]. Advances in Mechanics, 2016, 46(12): 506–540. DOI: 10.6052/1000-0992-16-004.