损伤演化对韧性金属碎裂过程的影响

曹祥 汤佳妮 王珠 郑宇轩 周风华

曹祥, 汤佳妮, 王珠, 郑宇轩, 周风华. 损伤演化对韧性金属碎裂过程的影响[J]. 爆炸与冲击, 2020, 40(1): 013102. doi: 10.11883/bzycj-2019-0041
引用本文: 曹祥, 汤佳妮, 王珠, 郑宇轩, 周风华. 损伤演化对韧性金属碎裂过程的影响[J]. 爆炸与冲击, 2020, 40(1): 013102. doi: 10.11883/bzycj-2019-0041
CAO Xiang, TANG Jiani, WANG Zhu, ZHENG Yuxuan, ZHOU Fenghua. Effect of damage evolution on the fragmentation process of ductile metals[J]. Explosion And Shock Waves, 2020, 40(1): 013102. doi: 10.11883/bzycj-2019-0041
Citation: CAO Xiang, TANG Jiani, WANG Zhu, ZHENG Yuxuan, ZHOU Fenghua. Effect of damage evolution on the fragmentation process of ductile metals[J]. Explosion And Shock Waves, 2020, 40(1): 013102. doi: 10.11883/bzycj-2019-0041

损伤演化对韧性金属碎裂过程的影响

doi: 10.11883/bzycj-2019-0041
基金项目: 国家自然科学基金(11390361,11402130)
详细信息
    作者简介:

    曹 祥(1993- ),男,硕士研究生,826884599@qq.com

    通讯作者:

    郑宇轩(1986- ),男,博士,副教授,zhengyuxuan@nbu.edu.cn

  • 中图分类号: O346.1

Effect of damage evolution on the fragmentation process of ductile metals

  • 摘要: 固体在冲击拉伸载荷作用下会断裂成多个碎片,基于线性内聚力断裂假设的Mott-Grady模型能较好地预测碎裂过程所产生的平均碎片尺度的下限。然而实际上,韧性金属的损伤演化是多元化的,为此通过数值模拟方法研究了不同损伤演化规律对韧性碎裂过程的影响。利用ABAQUS/Explicit动态有限元软件数值再现了韧性金属杆(45钢)在高应变率下拉伸碎裂的过程,分析了线性和非线性损伤演化对韧性碎裂过程的影响规律。结果表明:损伤演化规律对韧性金属的碎裂过程具有显著影响,非线性指标α越大,碎裂过程产生的碎片数越少;Grady-Kipp碎裂公式仍能在一定范围内预测韧性碎裂过程中产生的碎片尺寸;当非线性指标α远大于零时,在较低冲击拉伸载荷作用下,数值模拟结果和Grady-Kipp模型预测值偏差较大,随着应变率增大,数值模拟结果与Grady-Kipp模型预测值吻合较好。
  • 图  1  45钢杆的速度分布

    Figure  1.  Velocity distribution of 45 steel ductile metal bar

    图  2  非线性损伤演化下内聚力断裂特性和损伤因子

    Figure  2.  The cohesive laws for separation and damage factor D under nonlinear damage evolutions

    图  3  45钢杆的线性/非线性内聚力断裂曲线(初始应变率为2×104 s−1

    Figure  3.  The cohesive laws for separation under linear/nonlinear damage evolutions at the strain rate of 2×104 s−1

    图  4  不同损伤演化规律下一维杆碎裂后的形态

    Figure  4.  Fragmentized 1D stress bars under different damage evolution laws

    图  5  损伤演化方式对碎片数的影响

    Figure  5.  The effect of damage evolution laws on fragment number

    图  6  碎片断口形貌

    Figure  6.  The fracture appearance of fragments

    图  7  损伤演化方式对碎裂过程的影响

    Figure  7.  The effect of different damage evolution laws on fragmentation process

    图  8  不同损伤演化规律下的应力时程曲线

    Figure  8.  Stress-time curves under different damage evolution laws

    图  9  无量纲应变率和无量纲碎片尺寸的关系

    Figure  9.  The relationship between normalized strain rate and normalized fragment size

    图  10  α=10.0时,无量纲碎片尺寸与应变率的关系

    Figure  10.  Normalized fragment size vs normalized strain rate at cohesive parameter α=10.0

    表  1  45钢材料的Johnson-Cook本构模型的物理参数

    Table  1.   Material parameters of the 45 steel

    Materialρ/(kg·m−3)E/GPaνc/(J·kg−1·K−1)$T_ {\rm{t} }$/K$T_ {\rm{m} }$/KGc/(kN·m−1)
    45 steel7.8×1032030.294472981 76525
    Materialm$\beta $$\dot \varepsilon $/s−1A/MPaB/MPaCn
    45 steel1.060.915073200.0640.28
    下载: 导出CSV

    表  2  非线性损伤演化下内聚力断裂参数(断裂能Gc=25 kN/m)

    Table  2.   The cohesive parameters under nonlinear damage evolutions (Gc=25 kN/m)

    $\alpha $$u_{\rm{f}}^{{\rm{pl}}}$/μm$\alpha $$u_{\rm{f}}^{{\rm{pl}}}$/μm$\alpha $$u_{\rm{f}}^{{\rm{pl}}}$/μm$\alpha $$u_{\rm{f}}^{{\rm{pl}}}$/μm
    −10.024.1−5.026.9−1.0 37.3−0.1 42.7
    0.144.2 1.052.0 5.0112.010.0217.0
    下载: 导出CSV
  • [1] GRADY D E, BENSON D A. Fragmentation of metal rings by electromagnetic loading [J]. Experimental Mechanics, 1983, 23(4): 393–400. DOI: 10.1007/BF02330054.
    [2] GRADY D E, KIPP M E. Experimental measurement of dynamic failure and fragmentation properties of metals [J]. International Journal of Solids and Structures, 1995, 32(17−18): 2779–2791. DOI: 10.1016/ 0020-7683(94)00297-a.
    [3] GRADY D E, KIPP M E. Fragmentation properties of metals [J]. International Journal of Impact Engineering, 1997, 20(1−5): 293–308. DOI: 10.1016/ S0734-743X(97)87502-1.
    [4] MOTT N F. A theory of the fragmentation of shells and bombs [M]//GRADY D. Fragmentation of Rings and Shells. Berlin, Germany: Springer, 2006: 243–294. DOI: 10.1007/978-3-540-27145-1_11
    [5] MOTT N F. Fragmentation of shell cases [J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1947, 189(1018): 300–308. DOI: 10.1098/rspa.1947.0042.
    [6] KIPP M E, GRADY D E. Dynamic fracture growth and interaction in one dimension [J]. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399–415. DOI: 10.1016/0022-5096(85)90036-5.
    [7] GRADY D E. Fragmentation of rings and shells: the legacy of N. F. Mott [M]. Berlin: Springer, 2006. DOI: 10.1007/b138675
    [8] ZHANG H, RAVI-CHANDAR K. Dynamic fragmentation of ductile materials [J]. Journal of Physics D: Applied Physics, 2009, 42(21): 214010. DOI: 10.1088/0022-3727/42/21/214010.
    [9] LEVY S, MOLINARI J F, VICARI I I, DAVISON A C. Dynamic fragmentation of a ring: predictable fragment mass distributions [J]. Physical Review E, 2010, 82(6): 066105. DOI: 10.1103/PhysRevE.82.066105.
    [10] 陈磊, 周风华, 汤铁钢. 韧性金属圆环高速膨胀碎裂过程的有限元模拟 [J]. 力学学报, 2011, 43(5): 861–870. DOI: 10.6052/0459-1879-2011-5-lxxb2010-675.

    CHEN L, ZHOU F H, TANG T G. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 861–870. DOI: 10.6052/0459-1879-2011-5-lxxb2010-675.
    [11] 郑宇轩, 胡时胜, 周风华. 韧性材料的高应变率拉伸碎裂过程及材料参数影响 [J]. 固体力学学报, 2012, 33(4): 358–369. DOI: 10.3969/j.issn.0254-7805.2012.04.003.

    ZHENG Y X, HU S S, ZHOU F H. High strain rate tensile fragmentation process of ductile materials and the effects of material parameters [J]. Chinese Journal of Solid Mechanics, 2012, 33(4): 358–369. DOI: 10.3969/j.issn.0254-7805.2012.04.003.
    [12] GAO X, WANG T, KIM J. On ductile fracture initiation toughness: effects of void volume fraction, void shape and void distribution [J]. International Journal of Solids and Structures, 2005, 42(18−19): 5097–5117. DOI: 10.1016/j.ijsolstr.2005.02.028.
    [13] 周风华, 郭丽娜, 王礼立. 脆性固体碎裂过程中的最快卸载特性 [J]. 固体力学学报, 2010, 31(3): 286–295. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009.

    ZHOU F H, GUO L N, WNAG L L. The rapidest unloading characteristics in the fragmentation process of brittle solids [J]. Chinese Journal of Solid Mechanics, 2010, 31(3): 286–295. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009.
    [14] GILLES D, JORIS V, DON-PIERRE Z, et al. Stress release waves in plastic solids [J]. Journal of the Mechanics and Physics of Solids, 2019, 128: 21–31. DOI: 10.1016/j.jmps.2019.03.021.
    [15] 郑宇轩, 周风华, 余同希. 动态碎裂过程中的最快速卸载现象 [J]. 中国科学: 技术科学, 2016, 46(4): 332–338. DOI: 10.1360/N092016-00012.

    ZHENG Y X, ZHOU F H, YU T X. The rapidest unloading in dynamic fragmentation events [J]. Scientia Sinica Technologica, 2016, 46(4): 332–338. DOI: 10.1360/N092016-00012.
    [16] 郑宇轩, 周风华, 胡时胜, 等. 固体的冲击拉伸碎裂 [J]. 力学进展, 2016, 46(12): 506–540. DOI: 10.6052/1000-0992-16-004.

    ZHENG Y X, ZHOU F H, HU S S, et al. Fragmentation of solids under impact tension [J]. Advances in Mechanics, 2016, 46(12): 506–540. DOI: 10.6052/1000-0992-16-004.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  5370
  • HTML全文浏览量:  1366
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-01
  • 修回日期:  2019-05-16
  • 网络出版日期:  2019-12-25
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回