基于统一强度理论的岩石弹塑性本构模型及其数值实现

胡学龙 李克庆 璩世杰

胡学龙, 李克庆, 璩世杰. 基于统一强度理论的岩石弹塑性本构模型及其数值实现[J]. 爆炸与冲击, 2019, 39(8): 083108. doi: 10.11883/bzycj-2019-0044
引用本文: 胡学龙, 李克庆, 璩世杰. 基于统一强度理论的岩石弹塑性本构模型及其数值实现[J]. 爆炸与冲击, 2019, 39(8): 083108. doi: 10.11883/bzycj-2019-0044
HU Xuelong, LI Keqing, QU Shijie. The elastoplastic constitutive model of rock and its numerical implementation based on unified strength theory[J]. Explosion And Shock Waves, 2019, 39(8): 083108. doi: 10.11883/bzycj-2019-0044
Citation: HU Xuelong, LI Keqing, QU Shijie. The elastoplastic constitutive model of rock and its numerical implementation based on unified strength theory[J]. Explosion And Shock Waves, 2019, 39(8): 083108. doi: 10.11883/bzycj-2019-0044

基于统一强度理论的岩石弹塑性本构模型及其数值实现

doi: 10.11883/bzycj-2019-0044
基金项目: 国家自然科学基金(51274020);国家留学基金(201806460033)
详细信息
    作者简介:

    胡学龙(1989- ),男,博士研究生,huxuelong@xs.ustb.edu.cn

    通讯作者:

    李克庆(1966- ),男,博士,教授,Lkqing2003@163.com

  • 中图分类号: O346; TD313

The elastoplastic constitutive model of rock and its numerical implementation based on unified strength theory

  • 摘要: 基于弹塑性力学理论,以统一强度准则为屈服准则,建立了考虑硬化/软化行为和应变率效应的岩石弹塑性本构模型;采用Fortran语言通过LS-DYNA的用户自定义材料接口(Umat)对该弹塑性本构模型进行编程,并把该程序生成求解器以达到对该模型进行应用的目的;通过岩石的单轴压缩实验和SHPB实验对所建的弹塑性本构模型进行验证,结果表明,该弹塑性本构模型能够反映岩石在准静态和动态下的力学行为。
  • 图  1  统一屈服准则函数在偏平面上的轨迹

    Figure  1.  The locus of unified strength theory on deviatoric plane

    图  2  CPA应力返回映射算法几何示意图

    Figure  2.  Geometric illustration of CPA stress return mapping algorithms

    图  3  岩石弹塑性本构模型数值实现流程

    Figure  3.  Flow chart of numerical implementation of material constitutive model

    图  4  算例1内聚力c与广义剪切塑性应变γp之间的关系

    Figure  4.  Relation between cohesion c and generalized shear plastic strain γp in example 1

    图  5  算例1石灰岩单轴压缩应力应变曲线

    Figure  5.  Stress-strain curves of limestone uniaxial compression in example 1

    图  6  算例2内聚力c与广义剪切塑性应变γp之间的关系

    Figure  6.  Relation between cohesion c and generalized shear plastic strain γp in example 2

    图  7  fDIF与加载应变率之间的关系

    Figure  7.  Relation between fDIF and Loading rate

    图  8  SHPB实验装置示意图

    Figure  8.  Illustration of SHPB test device

    图  9  岩石SHPB数值实验模型

    Figure  9.  Numerical model of rock SHPB test

    图  10  算例2石灰岩准静态下单轴压缩应力应变曲线

    Figure  10.  Stress-strain curves of limestone quasi-static uniaxial compression in example 2

    图  11  利用石灰岩试样进行SHPB实验的应变时程曲线

    Figure  11.  Strain time history curve for split Hopkinson pressure bar experiment with a limestone sample

  • [1] 俞茂宏. 岩土类材料的统一强度理论及其应用 [J]. 岩土工程学报, 1994, 16(2): 1–9. DOI: 10.3321/j.issn:1000-4548.1994.02.001.

    YU Maohong. Unified strength theory for geomaterials and its applications [J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1–9. DOI: 10.3321/j.issn:1000-4548.1994.02.001.
    [2] 张金涛, 林天健. 三轴实验中岩石的应力状态和破坏性质 [J]. 力学学报, 1979(2): 99–105. DOI: 10.6052/0459-1879-1979-2-1979-015.

    ZHANG Jintao, LIN Tianjian. Stress consditions and the variation of rupture characteristics of a rock as shown by triaxial tests [J]. Chinese Journal of Theoretical and Applied Mechanics, 1979(2): 99–105. DOI: 10.6052/0459-1879-1979-2-1979-015.
    [3] 潘晓明, 孔娟, 杨钊, 等. 统一弹塑性本构模型在ABAQUS中的开发与应用 [J]. 岩土力学, 2010, 31(4): 1092–1098. DOI: 10.3969/j.issn.1000-7598.2010.04.014.

    PAN Xiaoming, KONG Juan, YANG Zhao, et al. Secondary development and application of unified elastoplastic constitutive model to ABAQUS [J]. Rock and Soil Mechanics, 2010, 31(4): 1092–1098. DOI: 10.3969/j.issn.1000-7598.2010.04.014.
    [4] 廖红建, 吴建英, 黄飞强, 等. 用统一强度理论求解岩土材料的动力强度参数 [J]. 岩石力学与工程学报, 2003, 22(12): 1994–2000. DOI: 10.3321/j.issn:1000-6915.2003.12.009.

    LIAO Hongjian, WU Jianying, HUANG Feiqiang, et al. Determination of dynamic strength parameters of geomaterials based on unified strength theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(12): 1994–2000. DOI: 10.3321/j.issn:1000-6915.2003.12.009.
    [5] 李杭州, 廖红建, 盛谦, 等. 基于统一强度理论的软岩损伤统计本构模型研究 [J]. 岩石力学与工程学报, 2006, 25(7): 1332–1336.

    LI Hangzhou, LIAO Hongjian, SHENG Qian, et al. Analysis of influence of discontinuous plane on strength of rock mass based on unified strength theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1332–1336.
    [6] 张强, 王红英, 王水林, 等. 基于统一强度理论的破裂围岩劣化弹塑性分析 [J]. 煤炭学报, 2010, 35(3): 381–386. DOI: 10.13225/j.cnki.jccs.2010.03.014.

    ZHANG Qiang, WANG Hongying, WANG Shuilin, et al. Deterioration elastoplastic analysis of cracked surrounding rocks based on unified strength theory [J]. Journal of China Coal Society, 2010, 35(3): 381–386. DOI: 10.13225/j.cnki.jccs.2010.03.014.
    [7] 曹雪叶, 赵均海, 张常光. 基于统一强度理论的 FGM 冻结壁弹塑性应力分析 [J]. 岩土力学, 2017, 38(3): 102–106. DOI: 10.16285/j.rsm.2017.03.000.

    CAO Xueye, ZHAO Junhai, ZHANG Changguang. Elastoplastic stress analysis of functionally graded material frozen soil wall based on unified strength theory [J]. Rock and Soil Mechanics, 2017, 38(3): 102–106. DOI: 10.16285/j.rsm.2017.03.000.
    [8] YU M H, HE L N. A new model and theory on yield and failure of materials under the complex stress state [C] // Jono M, Inoue T. Mechanical Behaviour of Materials-6. Oxford: Pergamon, 1991: 841−846.
    [9] 张传庆, 周辉, 冯夏庭. 统一弹塑性本构模型在 FLAC3D 中的计算格式 [J]. 岩土力学, 2008, 29(3): 596–602. DOI: 10.3969/j.issn.1000-7598.2008.03.005.

    ZHANG Chuanqing, ZHOU Hui, FENG Xiating. Numerical format of elastoplastic constitutive model based on the unified strength theory in FLAC3D [J]. Rock and Soil Mechanics, 2008, 29(3): 596–602. DOI: 10.3969/j.issn.1000-7598.2008.03.005.
    [10] 李杭州, 廖红建, 宋丽, 等. 双剪统一弹塑性应变软化本构模型研究 [J]. 岩石力学与工程学报, 2014, 33(4): 720–728. DOI: 10.16285/j.rsm.2006.11.027.

    LI Hangzhou, LIAO hongjian, SONG Li, et al. Twin shear unified elastoplastic constitutive model considering strain softening behavior [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 720–728. DOI: 10.16285/j.rsm.2006.11.027.
    [11] 门建兵, 蒋建伟, 王树有. 爆炸冲击数值模拟技术基础 [M]. 北京理工大学出版社, 2015, 7.

    MEN Jianbing, JIANG Jianwei, WANG Shuyou. Fundamentals of numerical simulation for explosion and shock problems [M]. Beijing Institute of Technology Press, 2015, 7.
    [12] LI H Z, XIONG G D, ZHAO C P. An elasto-plastic constitutive model for soft rock considering mobilization of strength [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(3): 822–834. DOI: 10.1016/S1003-6326(16)64173-0.
    [13] POURHOSSEINI O, SHABANIMASHCOOL M. Development of an elasto plastic constitutive model for intact rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 66: 1–12. DOI: 10.1016/j.ijrmms.2013.11.010.
    [14] WANG J C, WANG Z H, YANG S L. A coupled macro-and meso-mechanical model for heterogeneous coal [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 94: 64–81. DOI: 10.1016/j.ijrmms.2017.03.002.
    [15] ZHAO J. Applicability of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(7): 1115–1121. DOI: 10.1016/S1365-1609(00)00049-6.
    [16] LU D C, WANG G S, DU X L. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete [J]. International Journal of Impact Engineering, 2017, 103: 124–137. DOI: 10.1016/j.ijimpeng.2017.01.011.
    [17] YU M H, YANG S Y, FAN S C, et al. Unified elasto-plastic associated and non-associated constitutive model and its engineering applications [J]. Computers and structures, 1999, 71: 627–636. DOI: 10.1016/S0045-7949(98)00306-X.
    [18] ZHANG J C. Experimental and modelling investigations of the coupled elastoplastic damage of a quasi-brittle rock [J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 465–478. DOI: 10.1007/s00603-017-1322-z.
    [19] FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J]. Experimental Mechanics, 2001, 46(1): 40–46. DOI: 10.1007/BF02323102.
    [20] FREW D J. Dynamic response of brittle materials from penetration and split Hopkison pressure bar experiments[D]. Arizona State University, 2000.
    [21] LIAO Z Y, ZHU J B, XIA K W. Determination of dynamic compressive and tensile behavior of rocks from numerical tests of split Hopkinson pressure and tension bars [J]. Rock Mechanics and Rock Engineerings, 2016, 49(10): 3917–3934. DOI: 10.1007/s00603-016-0954-8.
  • 加载中
图(11)
计量
  • 文章访问数:  6116
  • HTML全文浏览量:  1423
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-18
  • 修回日期:  2019-05-10
  • 网络出版日期:  2019-06-25
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回