[1] |
俞茂宏. 岩土类材料的统一强度理论及其应用 [J]. 岩土工程学报, 1994, 16(2): 1–9. DOI: 10.3321/j.issn:1000-4548.1994.02.001.YU Maohong. Unified strength theory for geomaterials and its applications [J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1–9. DOI: 10.3321/j.issn:1000-4548.1994.02.001.
|
[2] |
张金涛, 林天健. 三轴实验中岩石的应力状态和破坏性质 [J]. 力学学报, 1979(2): 99–105. DOI: 10.6052/0459-1879-1979-2-1979-015.ZHANG Jintao, LIN Tianjian. Stress consditions and the variation of rupture characteristics of a rock as shown by triaxial tests [J]. Chinese Journal of Theoretical and Applied Mechanics, 1979(2): 99–105. DOI: 10.6052/0459-1879-1979-2-1979-015.
|
[3] |
潘晓明, 孔娟, 杨钊, 等. 统一弹塑性本构模型在ABAQUS中的开发与应用 [J]. 岩土力学, 2010, 31(4): 1092–1098. DOI: 10.3969/j.issn.1000-7598.2010.04.014.PAN Xiaoming, KONG Juan, YANG Zhao, et al. Secondary development and application of unified elastoplastic constitutive model to ABAQUS [J]. Rock and Soil Mechanics, 2010, 31(4): 1092–1098. DOI: 10.3969/j.issn.1000-7598.2010.04.014.
|
[4] |
廖红建, 吴建英, 黄飞强, 等. 用统一强度理论求解岩土材料的动力强度参数 [J]. 岩石力学与工程学报, 2003, 22(12): 1994–2000. DOI: 10.3321/j.issn:1000-6915.2003.12.009.LIAO Hongjian, WU Jianying, HUANG Feiqiang, et al. Determination of dynamic strength parameters of geomaterials based on unified strength theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(12): 1994–2000. DOI: 10.3321/j.issn:1000-6915.2003.12.009.
|
[5] |
李杭州, 廖红建, 盛谦, 等. 基于统一强度理论的软岩损伤统计本构模型研究 [J]. 岩石力学与工程学报, 2006, 25(7): 1332–1336.LI Hangzhou, LIAO Hongjian, SHENG Qian, et al. Analysis of influence of discontinuous plane on strength of rock mass based on unified strength theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1332–1336.
|
[6] |
张强, 王红英, 王水林, 等. 基于统一强度理论的破裂围岩劣化弹塑性分析 [J]. 煤炭学报, 2010, 35(3): 381–386. DOI: 10.13225/j.cnki.jccs.2010.03.014.ZHANG Qiang, WANG Hongying, WANG Shuilin, et al. Deterioration elastoplastic analysis of cracked surrounding rocks based on unified strength theory [J]. Journal of China Coal Society, 2010, 35(3): 381–386. DOI: 10.13225/j.cnki.jccs.2010.03.014.
|
[7] |
曹雪叶, 赵均海, 张常光. 基于统一强度理论的 FGM 冻结壁弹塑性应力分析 [J]. 岩土力学, 2017, 38(3): 102–106. DOI: 10.16285/j.rsm.2017.03.000.CAO Xueye, ZHAO Junhai, ZHANG Changguang. Elastoplastic stress analysis of functionally graded material frozen soil wall based on unified strength theory [J]. Rock and Soil Mechanics, 2017, 38(3): 102–106. DOI: 10.16285/j.rsm.2017.03.000.
|
[8] |
YU M H, HE L N. A new model and theory on yield and failure of materials under the complex stress state [C] // Jono M, Inoue T. Mechanical Behaviour of Materials-6. Oxford: Pergamon, 1991: 841−846.
|
[9] |
张传庆, 周辉, 冯夏庭. 统一弹塑性本构模型在 FLAC3D 中的计算格式 [J]. 岩土力学, 2008, 29(3): 596–602. DOI: 10.3969/j.issn.1000-7598.2008.03.005.ZHANG Chuanqing, ZHOU Hui, FENG Xiating. Numerical format of elastoplastic constitutive model based on the unified strength theory in FLAC3D [J]. Rock and Soil Mechanics, 2008, 29(3): 596–602. DOI: 10.3969/j.issn.1000-7598.2008.03.005.
|
[10] |
李杭州, 廖红建, 宋丽, 等. 双剪统一弹塑性应变软化本构模型研究 [J]. 岩石力学与工程学报, 2014, 33(4): 720–728. DOI: 10.16285/j.rsm.2006.11.027.LI Hangzhou, LIAO hongjian, SONG Li, et al. Twin shear unified elastoplastic constitutive model considering strain softening behavior [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 720–728. DOI: 10.16285/j.rsm.2006.11.027.
|
[11] |
门建兵, 蒋建伟, 王树有. 爆炸冲击数值模拟技术基础 [M]. 北京理工大学出版社, 2015, 7.MEN Jianbing, JIANG Jianwei, WANG Shuyou. Fundamentals of numerical simulation for explosion and shock problems [M]. Beijing Institute of Technology Press, 2015, 7.
|
[12] |
LI H Z, XIONG G D, ZHAO C P. An elasto-plastic constitutive model for soft rock considering mobilization of strength [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(3): 822–834. DOI: 10.1016/S1003-6326(16)64173-0.
|
[13] |
POURHOSSEINI O, SHABANIMASHCOOL M. Development of an elasto plastic constitutive model for intact rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 66: 1–12. DOI: 10.1016/j.ijrmms.2013.11.010.
|
[14] |
WANG J C, WANG Z H, YANG S L. A coupled macro-and meso-mechanical model for heterogeneous coal [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 94: 64–81. DOI: 10.1016/j.ijrmms.2017.03.002.
|
[15] |
ZHAO J. Applicability of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(7): 1115–1121. DOI: 10.1016/S1365-1609(00)00049-6.
|
[16] |
LU D C, WANG G S, DU X L. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete [J]. International Journal of Impact Engineering, 2017, 103: 124–137. DOI: 10.1016/j.ijimpeng.2017.01.011.
|
[17] |
YU M H, YANG S Y, FAN S C, et al. Unified elasto-plastic associated and non-associated constitutive model and its engineering applications [J]. Computers and structures, 1999, 71: 627–636. DOI: 10.1016/S0045-7949(98)00306-X.
|
[18] |
ZHANG J C. Experimental and modelling investigations of the coupled elastoplastic damage of a quasi-brittle rock [J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 465–478. DOI: 10.1007/s00603-017-1322-z.
|
[19] |
FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J]. Experimental Mechanics, 2001, 46(1): 40–46. DOI: 10.1007/BF02323102.
|
[20] |
FREW D J. Dynamic response of brittle materials from penetration and split Hopkison pressure bar experiments[D]. Arizona State University, 2000.
|
[21] |
LIAO Z Y, ZHU J B, XIA K W. Determination of dynamic compressive and tensile behavior of rocks from numerical tests of split Hopkinson pressure and tension bars [J]. Rock Mechanics and Rock Engineerings, 2016, 49(10): 3917–3934. DOI: 10.1007/s00603-016-0954-8.
|