大断面隧道钻爆冲击波的衰减规律

张学民 周贤舜 王立川 杨国富 冯涵 高祥 马明正

张学民, 周贤舜, 王立川, 杨国富, 冯涵, 高祥, 马明正. 大断面隧道钻爆冲击波的衰减规律[J]. 爆炸与冲击, 2020, 40(2): 025101. doi: 10.11883/bzycj-2019-0045
引用本文: 张学民, 周贤舜, 王立川, 杨国富, 冯涵, 高祥, 马明正. 大断面隧道钻爆冲击波的衰减规律[J]. 爆炸与冲击, 2020, 40(2): 025101. doi: 10.11883/bzycj-2019-0045
ZHANG Xuemin, ZHOU Xianshun, WANG Lichuan, YANG Guofu, FENG Han, GAO Xiang, MA Mingzheng. Attenuation of blast wave in a large-section tunnel[J]. Explosion And Shock Waves, 2020, 40(2): 025101. doi: 10.11883/bzycj-2019-0045
Citation: ZHANG Xuemin, ZHOU Xianshun, WANG Lichuan, YANG Guofu, FENG Han, GAO Xiang, MA Mingzheng. Attenuation of blast wave in a large-section tunnel[J]. Explosion And Shock Waves, 2020, 40(2): 025101. doi: 10.11883/bzycj-2019-0045

大断面隧道钻爆冲击波的衰减规律

doi: 10.11883/bzycj-2019-0045
基金项目: 国家自然科学基金(51978671,51378505);郑万铁路客运专线科技计划项目(2016-068)
详细信息
    作者简介:

    张学民(1973- ),男,博士,副教授,zhangxm@csu.edu.cn

    通讯作者:

    王立川(1965- ),男,博士,正高级工程师,wlc773747@126.com

  • 中图分类号: O382;TD235

Attenuation of blast wave in a large-section tunnel

  • 摘要: 隧道开挖爆破产生的空气冲击波的破坏效应,将会对人员、机具设备与周围环境造成危害。隧道钻孔爆破冲击波的影响因素比裸露药包爆炸更多、更复杂,研究其衰减规律对采取合适的防护措施意义重大。本文中开展了时速350 km双线铁路大断面隧道钻孔爆破空气冲击波的现场测试,分析了不同工况下冲击波传播规律及影响因素。结果表明:钻爆冲击波超压时程曲线存在多个不同幅值的超压波峰,波峰之间具有明显微差延时的短间隔性,传播至远场未形成稳定的单一平面波,与单一药包爆炸冲击波的传播规律存在差异;钻爆冲击波超压信号由多段与微差延时相对应的子信号叠加而成,子信号数量与毫秒延期雷管段数相同,呈现出典型的时域特征;相同爆破条件下,大断面隧道钻爆时的乳化炸药冲击波转化因数小于小断面巷道工况下的;相较于总药量及最大段药量,按掏槽药量计算的超压峰值与实测超压峰值之间的相关性最强,钻爆冲击波最大超压峰值宜按掏槽段炸药TNT当量确定;隧道内大型机械设备等障碍物改变了钻爆冲击波流场的传播规律,呈现较明显的叠加放大效应。
  • 图  1  隧道钻爆炮孔及段别布置

    Figure  1.  Layout of tunnel blasting holes and detonator segments

    图  2  测试仪器

    Figure  2.  Test instruments

    图  3  隧道现场仪器布置

    Figure  3.  Instrument arrangement in the tunnel

    图  4  隧道洞内冲击波超压测点布置

    Figure  4.  Measuring points of blasting shock wave overpressure in the tunnel

    图  5  隧道钻爆冲击波超压时程曲线

    Figure  5.  Shock wave overpressure-time curves in railway tunnel borehole blasting

    图  6  坑道裸露药包爆炸冲击波超压时程曲线[4]

    Figure  6.  Shock wave overpressure-time curve of exposed charge in the mine tunnel[4]

    图  7  隧道钻爆振速和冲击波超压时程曲线

    Figure  7.  Vibration velocity-time curve and shock wave overpressure-time curve in tunnel borehole blasting

    图  8  微差爆破振动与冲击波信号的模式自适应小波时能密度曲线

    Figure  8.  Pattern adapted wavelet time-energy density curves of millisecond blast vibration and shock wave signal

    图  9  各段别时刻对应的超压峰值与药量关系

    Figure  9.  Relations between peak overpressure and explosive quantity at different segments

    图  10  计算超压和实测超压之间的相关性

    Figure  10.  Correlations between calculated and measured overpressures

    图  11  隧道内障碍物现场

    Figure  11.  Obstacles in the tunnel

    图  12  钻爆冲击波遇障碍物前后超压峰值变化曲线

    Figure  12.  Overpressure peak changes of shock waves induced by drilling and blasting operation in the explosive fields with obstacles

    图  13  钻爆冲击波超压峰值与比例距离的关系

    Figure  13.  Relation of blasting air shock wave overpressure peak values versus scaled distance

    表  1  上台阶钻爆设计参数

    Table  1.   Design parameters of borehole blasting for the upper bench

    炮孔分类段别孔数孔深/m单孔药卷数单孔用药量/kg延期时间/ms总药量/kg
    内掏槽 1 43.051.0 0 4.0
    外掏槽 1165.512/152.4/3.0 0 44.4
    辅助孔 3164.8132.6 50 41.6
    辅助孔 5104.8122.4110 24.0
    辅助孔 7124.5112.2200 26.4
    辅助孔 9184.5112.2310 39.6
    辅助孔11 64.3112.2460 13.2
    辅助孔13124.28/91.6/1.8650 20.4
    上周边孔15474.240.8880 37.6
    下周边孔15 84.28/9/10/111.6/1.8/2.0/2.2880 15.2
    压孔 7 64.581.6200 9.6
    压孔辅助 9 84.581.6310 12.8
    二圈孔13104.261.2650 12.0
    抬孔 3 24.330.6 50 1.2
    抬孔 5 64.291.8110 10.8
    抬孔 7 54.2102.0200 10.0
    底板孔11164.58/11/121.6/2.2/2.4460 39.6
    角孔15 24.5122.4880 4.8
    合计367.2
    下载: 导出CSV

    表  2  隧道上台阶钻爆冲击波测试结果

    Table  2.   Records of shock wave test in upper bench cutting

    试验工况总药量/kg掏槽药量/kg最大段药量(段别)/kg测点爆心距/m超压峰值/kPa
    A1367.248.457.6 (MS15)1 74.54.259
    3136.02.818
    4166.01.894
    A2359.549.690.4 (MS09)1 80.03.549
    2110.02.408
    3140.02.802*
    4170.02.645*
    5210.02.269*
    A3359.549.690.4 (MS09)1 64.04.608
    2 99.03.019
    3144.02.567
    4184.01.863
    A4343.747.262.4 (MS11)1165.03.213
    3255.02.292*
    4300.02.764*
    A5343.747.262.4 (MS11)1147.03.380
    2173.02.959
    3279.03.089*
    A6351.752.063.2 (MS11)1146.03.870
    2174.02.590
    下载: 导出CSV
  • [1] BENSELAMA A M, WILLIAM-LOUIS MAMEJ P, MONNOYER F, et al. A numerical study of the evolution of the blast wave shape in tunnels [J]. Journal of Hazardous Materials, 2010, 181(1-3): 609–616. DOI: 10.1016/j.jhazmat.2010.05.056.
    [2] 杨科之, 杨秀敏. 坑道内化爆冲击波的传播规律 [J]. 爆炸与冲击, 2003, 23(1): 37–40.

    YANG K Z, YANG X M. Shock waves propagation inside tunnels [J]. Explosion and Shock Waves, 2003, 23(1): 37–40.
    [3] 李秀地, 郑颖人. 坑道中冲击波冲量传播模型的试验 [J]. 解放军理工大学学报(自然科学版), 2007, 8(5): 425–428. DOI: 10.7666/j.issn.1009-3443.20070504.

    LI X D, ZHENG Y R. Scale model tests to determine in tunnel blast impulse from HE charges at tunnel entrance [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2007, 8(5): 425–428. DOI: 10.7666/j.issn.1009-3443.20070504.
    [4] 刘晶波, 闫秋实, 伍俊. 坑道内爆炸冲击波传播规律的研究 [J]. 振动与冲击, 2009, 28(6): 8–11. DOI: 10.3969/j.issn.1000-3835.2009.06.003.

    LIU J B, YAN Q S, WU J. Analysis of blast wave propagation inside tunnels [J]. Journal of Vibration and Shock, 2009, 28(6): 8–11. DOI: 10.3969/j.issn.1000-3835.2009.06.003.
    [5] 田志敏, 邬玉斌, 罗奇峰. 隧道内爆炸冲击波传播特性及爆炸荷载分布规律研究 [J]. 振动与冲击, 2011, 30(1): 21–26. DOI: 10.3969/j.issn.1000-3835.2011.01.005.

    TIAN Z M, WU Y B, LUO Q F. Characteristics of in-tunnel explosion-induced air shock wave and distribution law of reflected shock wave load [J]. Journal of Vibration and Shock, 2011, 30(1): 21–26. DOI: 10.3969/j.issn.1000-3835.2011.01.005.
    [6] YAN Q S, DU X L. Forecasting research of overpressure of explosive blast in subway tunnels [J]. Journal of Vibroengineering, 2015, 17(6): 33810–3391.
    [7] 李玉民, 胡峰. 井下爆破空气冲击波传播规律的量纲分析与拟合 [J]. 矿冶工程, 1993, 13(2): 13–17.

    LI Y M, HU F. The dimensional and regression analyses on the propagation regulation of air blast waves in mines [J]. Mining and Metallurgical Engineering, 1993, 13(2): 13–17.
    [8] 庞伟宾, 何翔, 李茂生, 等. 空气冲击波在坑道内走时规律的实验研究 [J]. 爆炸与冲击, 2003, 23(6): 573–576.

    PANG W B, HE X, LI M S, et al. The formula for air blast time of arrival in tunnel [J]. Explosion and Shock Waves, 2003, 23(6): 573–576.
    [9] 庞伟宾, 李永池, 何翔. 化爆冲击波在T型通道内到时规律的实验研究 [J]. 爆炸与冲击, 2007, 27(1): 63–67. DOI: 10.11883/1001-1455(2007)01-0063-05.

    PANG W B, LI Y C, HE X. The regularity of arrival time in T-shaped tunnel for shock wave due to explosions from high explosive charges [J]. Explosion and Shock Waves, 2007, 27(1): 63–67. DOI: 10.11883/1001-1455(2007)01-0063-05.
    [10] 赵晓磊. 城市地铁浅埋隧道爆破振动及空气冲击波传播规律探索[D]. 大连: 大连理工大学, 2015.

    ZHAO X L. Exploration of laws of blasting vibration and air blast propagation for urban shallow tunnels [D]. Dalian, China: Dalian University of Technology, 2015.
    [11] 陈明, 何文学, 卢文波, 等. 隧洞开挖爆破空气超压诱发围岩振动机理 [J]. 振动与冲击, 2017, 36(12): 12–17. DOI: 10.13465/j.cnki.jvs.2017.12.003.

    CHEN M, HE W X, LU W B, et al. Studies on the vibration of tunnel surrounding rock induced by air overpressure [J]. Journal of Vibration and Shock, 2017, 36(12): 12–17. DOI: 10.13465/j.cnki.jvs.2017.12.003.
    [12] 汪旭光, 于亚伦, 刘殿中. 爆破安全规程实施手册[M]. 北京: 人民交通出版社, 2004: 157−158.
    [13] 张胜, 凌同华, 刘浩然, 等. 模式自适应小波时能密度法及其在微差爆破振动信号分析中的应用 [J]. 煤炭学报, 2014, 39(10): 2007–2013. DOI: 10.13225/j.cnki.jccs.2014.0325.

    ZHANG S, LING T H, LIU H R, et al. Pattern adapted wavelet time-energy density method and its application in millisecond blast vibration signal analysis [J]. Journal of China Coal Society, 2014, 39(10): 2007–2013. DOI: 10.13225/j.cnki.jccs.2014.0325.
    [14] 汪旭光, 郑炳旭, 张正忠, 等. 爆破安全规程GB6722-2014 [S]. 北京: 中国标准出版社, 2015: 42−46.
    [15] 萨文科, 古林, 马雷. 井下空气冲击波[M]. 龙维祺, 丁亚伦, 译. 北京: 冶金工业出版社, 1979: 98−100.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  5505
  • HTML全文浏览量:  1996
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-18
  • 修回日期:  2019-08-27
  • 网络出版日期:  2020-01-25
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回