Al2O3陶瓷动静态压缩下碎片形貌与破坏机理分析

谈瑞 李海洋 黄俊宇

谈瑞, 李海洋, 黄俊宇. Al2O3陶瓷动静态压缩下碎片形貌与破坏机理分析[J]. 爆炸与冲击, 2020, 40(2): 023103. doi: 10.11883/bzycj-2019-0050
引用本文: 谈瑞, 李海洋, 黄俊宇. Al2O3陶瓷动静态压缩下碎片形貌与破坏机理分析[J]. 爆炸与冲击, 2020, 40(2): 023103. doi: 10.11883/bzycj-2019-0050
TAN Rui, LI Haiyang, HUANG Junyu. Investigations on the fragment morphology and fracture mechanisms of Al2O3 ceramics under dynamic and quasi-static compression[J]. Explosion And Shock Waves, 2020, 40(2): 023103. doi: 10.11883/bzycj-2019-0050
Citation: TAN Rui, LI Haiyang, HUANG Junyu. Investigations on the fragment morphology and fracture mechanisms of Al2O3 ceramics under dynamic and quasi-static compression[J]. Explosion And Shock Waves, 2020, 40(2): 023103. doi: 10.11883/bzycj-2019-0050

Al2O3陶瓷动静态压缩下碎片形貌与破坏机理分析

doi: 10.11883/bzycj-2019-0050
基金项目: 国家自然科学基金(11802252)
详细信息
    作者简介:

    谈 瑞(1994- ),女,硕士研究生,r__tan@163.com

    通讯作者:

    黄俊宇(1989- ),男,博士,副教授,jyhuang@pims.ac.cn

  • 中图分类号: O347.4

Investigations on the fragment morphology and fracture mechanisms of Al2O3 ceramics under dynamic and quasi-static compression

  • 摘要: 为探究Al2O3陶瓷的宏观力学响应与破坏机理,分别利用材料试验机和分离式霍普金森压杆对其进行准静态和动态压缩实验,同时通过原位光学成像观测试样的破坏过程,并利用同步辐射CT和扫描电镜(SEM)对回收碎片的尺寸和形状以及微观破坏模式进行表征分析。宏观强度数据表明,Al2O3陶瓷的抗压强度符合Weibull分布,且与加载应变率呈现指数增长关系。原位光学成像和SEM回收分析共同揭示了动静态加载下裂纹成核与扩展模式存在明显差异。准静态加载时材料微观上更易发生沿晶断裂,宏观表现为劈裂裂纹较少,且倾向于沿加载方向传播并贯穿整个试样;而动态加载时穿晶断裂占主导地位,劈裂裂纹明显增加并发生相互作用,因此在传播过程中容易分叉而形成大量次生裂纹,提高了试样内裂纹密度。这与碎片的CT表征结果一致,即碎片平均球形度和伸长、扁平指数等均随应变率对数线性增加。破坏模式的改变最终导致高应变率下陶瓷材料应变率敏感性显著增强。
  • 图  1  分离式霍普金森压杆及原位光学成像系统示意图

    Figure  1.  Schematic diagram of the SHPB device implemented with an in-situ optical imaging system

    图  2  SHPB实验数据处理

    Figure  2.  Data processing in SHPB experiments

    图  3  Al2O3陶瓷的压缩破坏强度

    Figure  3.  Compressive fracture strength of Al2O3 ceramics

    图  4  Al2O3陶瓷在应变率为0.001 s−1的准静态 压缩下的原位光学成像结果

    Figure  4.  In-situ optical imaging of the Al2O3 ceramics under quasi-static compression at 0.001 s−1

    图  5  Al2O3陶瓷在应变率为1 000 s −1的动态压缩下的原位光学成像结果

    Figure  5.  In-situ optical imaging of the Al2O3 ceramics under dynamic compression at 1 000 s −1

    图  6  不同应变率下碎片的三维图像与等效直径分布情况

    Figure  6.  Volume renderings and the equivalent diameter of fragments at different strain rates

    图  7  碎片形状参数(均值和标准差)随应变率的变化关系

    Figure  7.  Evolution of the shape parameters (mean and standard deviations) of the fragments with the strain rate

    图  8  不同应变率下碎片的SEM图

    Figure  8.  SEM micrographs of fragments at different strain rates

  • [1] 朱志斌, 郭志军, 刘英, 等. 氧化铝陶瓷的发展与应用 [J]. 陶瓷, 2003, 161(1): 5–8. DOI: 10.3969/j.issn.1002-2872.2003.01.001.

    ZHU Z B, GUO Z J, LIU Y, et al. Development and application of alumina ceramic [J]. Ceramics, 2003, 161(1): 5–8. DOI: 10.3969/j.issn.1002-2872.2003.01.001.
    [2] 胡玉龙,蒋凡. 装甲陶瓷的发展现状和趋势 [J]. 兵器材料科学与工程, 1996, 19(5): 37–42. DOI: 10.14024/j.cnki.1004 -244x.1996.05.008.

    HU Y L, JIANG F. Development and current status of armor ceramics [J]. Ordnance Material Science and Engineering, 1996, 19(5): 37–42. DOI: 10.14024/j.cnki.1004 -244x.1996.05.008.
    [3] 李聪. 刚玉球/铝合金复合材料的制备及其抗弹性能研究[D]. 南京: 南京航空航天大学, 2008: 6−7. DOI: 10.7666/d.d052470.
    [4] STRAßBURGER E. Ballistic testing of transparent armour ceramics [J]. Journal of the European Ceramic Society, 2009, 29(2): 267–273. DOI: 10.1016/j.jeurceramsoc.2008.03.049.
    [5] 吴燕平, 燕青芝. 防弹装甲中的陶瓷材料 [J]. 兵器材料科学与工程, 2017, 40(4): 141–146. DOI: 10.14024/j.cnki.1004-244x.20170630.001.

    WU Y P, YAN Q Z. Application of ceramics in armor protection [J]. Ordnance Material Science and Engineering, 2017, 40(4): 141–146. DOI: 10.14024/j.cnki.1004-244x.20170630.001.
    [6] 唐录成. 平面冲击加载下A95陶瓷动态力学性能研究[D]. 重庆: 重庆大学, 2009: 1−10. DOI: 10.7666/d.y1666484.
    [7] JIAO T, LI Y, RAMESH K T, et al. High rate response and dynamic failure of structural ceramics [J]. International Journal of Applied Ceramic Technology, 2010, 1(3): 243–253. DOI: 10.1111/j.1744-7402.2004.tb00176.x.
    [8] KIMBERLEY J, RAMESH K T, DAPHALAPURKAR N P. A scaling law for the dynamic strength of brittle solids [J]. Acta Materialia, 2013, 61(9): 3509–3521. DOI: 10.1016/j.actamat.2013.02.045.
    [9] SZLUFARSKA I, RAMESH K T, WARNER D H. Simulating mechanical behavior of ceramics under extreme conditions [J]. Annual Review of Materials Research, 2013, 43(1): 131–156. DOI: 10.1146/annurev-matsci-071312-121714.
    [10] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. American Institute of Physics, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
    [11] 杨震琦, 庞宝君, 王立闻, 等. JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用 [J]. 爆炸与冲击, 2010, 30(5): 463–471. DOI: 10.11883/1001-1455(2010)05-0463-09.

    YANG Z Q, PANG B J, WANG L W, et al. JH-2 model and its application to numerical simulation on Al2O3 ceramic under low-velocity impact [J]. Explosion and Shock Waves, 2010, 30(5): 463–471. DOI: 10.11883/1001-1455(2010)05-0463-09.
    [12] 李英雷, 胡时胜, 李英华. A95陶瓷材料的动态压缩测试研究 [J]. 爆炸与冲击, 2004, 24(3): 233–239.

    LI Y L, HU S S, LI Y H. Research on dynamic behaviors of A95 ceramics under compression [J]. Explosion and Shock Waves, 2004, 24(3): 233–239.
    [13] 张晓晴, 姚小虎, 宁建国, 等. Al2O3陶瓷材料应变率相关的动态本构关系研究 [J]. 爆炸与冲击, 2004, 24(3): 226–232.

    ZHANG X Q, YAO X H, NING J G, et al. A study on the strain-rate dependent dynamic constitutive equation of Al2O3 ceramics [J]. Explosion and Shock Waves, 2004, 24(3): 226–232.
    [14] 刘荫秋, 王正国, 马玉媛. 创伤弹道学[M]. 北京: 人民军医出版社, 1991: 76−77.
    [15] 靳晓庆. 陶瓷材料在准静态和冲击压缩载荷作用下的动态碎裂过程[D]. 宁波: 宁波大学, 2014: 27−57.
    [16] 周风华, 王永刚. 影响冲击载荷下脆性材料碎片尺度的因素 [J]. 爆炸与冲击, 2008, 28(4): 298–303. DOI: 10.11883/1001-1455(2008)04-0298-06.

    ZHOU F H, WANG Y G. Factors controlling sizes of brittle fragments due to impact loadings [J]. Explosion and Shock Waves, 2008, 28(4): 298–303. DOI: 10.11883/1001-1455(2008)04-0298-06.
    [17] 周风华, 郭丽娜, 王礼立. 脆性固体碎裂过程中的最快卸载特性 [J]. 固体力学学报, 2010, 31(3): 129–133. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009.

    ZHOU F H, GUO L N, WANG L L. The rapidest unloading characteristics in the fragmentation process of brittle solids [J]. Chinese Journal of Solid Mechanics, 2010, 31(3): 129–133. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009.
    [18] SHAN J F, XU S L, LIU Y G, et al. Dynamic breakage of glass sphere subjected to impact loading [J]. Powder Technology, 2018, 330: 317–329. DOI: 10.1016/j.powtec.2018.02.009.
    [19] HUANG J Y, E J C, HUANG J W, et al. Dynamic deformation and fracture of single crystal silicon: fracture modes, damage laws, and anisotropy [J]. Acta Materialia, 2016, 114: 136–145. DOI: 10.1016/j.actamat.2016.05.022.
    [20] 许峰, 胡小方, 卢斌, 等. 碳化硼固相烧结微观结构演化的同步辐射CT观测 [J]. 无机材料学报, 2009, 24(1): 175–181. DOI: 10.3724/SP.J.1077.2009.00175.

    XU F, HU X F, LU B, et al. Microstructures-evolution observation of boron carbide ceramic during sintering process by synchrotron radiation X-ray computed tomography [J]. Journal of Inorganic Materials, 2009, 24(1): 175–181. DOI: 10.3724/SP.J.1077.2009.00175.
    [21] SHENG J, LUMING S, FRANÇOIS G, et al. Energy dissipation from two-glass-bead chains under impact [J]. International Journal of Impact Engineering, 2018, 114: 160–168. DOI: 10.1016/j.ijimpeng.2018.01.002.
    [22] BIE B X, HUANG J Y, FAN D, et al. Orientation-dependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: a synchrotron-based study [J]. Carbon, 2017, 121: 127–133. DOI: 10.1016/j.carbon.2017.05.083.
    [23] KONG D, FONSECA J. Quantification of the morphology of shelly carbonate sands using 3D images [J]. Géotechnique, 2017, 68(3): 1–13. DOI: 10.1680/jgeot.16.p.278.
    [24] RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar [J]. Journal of the American Ceramic Society, 1994, 77(1): 263–267. DOI: 10.1111/j.1151-2916.1994.tb06987.x.
    [25] SONG B, CHEN W. Loading and unloading split hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops [J]. Experimental Mechanics, 2004, 44(6): 622–627. DOI: 10.1007/BF02428252.
    [26] GURSOY D, DE C F, XIAO X H, et al. TomoPy: a framework for the analysis of synchrotron tomographic data [J]. Journal of Synchrotron Radiation, 2014, 21(5): 1188–1193. DOI: 10.1107/S1600577514013939.
    [27] FOK S L, MITCHELL B C, SMART J, et al. A numerical study on the application of Weibull theory to brittle materials [J]. Engineering Fracture Mechanics, 2001, 68(10): 1171–1179. DOI: 10.1016/S0013-7944(01)00022-4.
    [28] HUANG J, XU S, YI H, et a1. Size effect on the compression breakage strengths of glass particles [J]. Powder Technology, 2014, 268(1): 86–94. DOI: 10.1016/j.powtec.2014.08.037.
    [29] KELEŞ Ö, GARCÍA R E, BOWMAN K J. Deviations from Weibull statistics in brittle porous materials [J]. Acta Materialia, 2013, 61(19): 7207–7215. DOI: 10.1016/j.actamat.2013.08.025.
    [30] STAEHLER J M, PREDEBON W W, PLETKA B J, et al. Micromechanisms of deformation in high-purity hot-pressed alumina [J]. Materials Science & Engineering: A, 2000, 291(1-2): 37–45. DOI: 10.1016/s0921-5093(00)00976-x.
    [31] THEODOROU D N, SUTER U W. Shape of unperturbed linear polymers: polypropylene [J]. Macromolecules, 1985, 18(6): 1206–1214. DOI: 10.1021/ma00148a028.
    [32] FAROOQUE T M, CAMP C H, TISON C K, et al. Measuring stem cell dimensionality in tissue scaffolds [J]. Biomaterials, 2014, 35(9): 2558–2567. DOI: 10.1016/j.biomaterials.2013.12.092.
  • 加载中
图(8)
计量
  • 文章访问数:  6504
  • HTML全文浏览量:  2093
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-22
  • 修回日期:  2019-04-01
  • 网络出版日期:  2019-12-25
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回