纳米W粉冲击烧结的分子动力学模拟

刘晓雯 冯建锐 周强 陈鹏万

刘晓雯, 冯建锐, 周强, 陈鹏万. 纳米W粉冲击烧结的分子动力学模拟[J]. 爆炸与冲击, 2020, 40(2): 024202. doi: 10.11883/bzycj-2019-0057
引用本文: 刘晓雯, 冯建锐, 周强, 陈鹏万. 纳米W粉冲击烧结的分子动力学模拟[J]. 爆炸与冲击, 2020, 40(2): 024202. doi: 10.11883/bzycj-2019-0057
LIU Xiaowen, FENG Jianrui, ZHOU Qiang, CHEN Pengwan. Molecular dynamics simulation of shock consolidation of nano tungsten powder[J]. Explosion And Shock Waves, 2020, 40(2): 024202. doi: 10.11883/bzycj-2019-0057
Citation: LIU Xiaowen, FENG Jianrui, ZHOU Qiang, CHEN Pengwan. Molecular dynamics simulation of shock consolidation of nano tungsten powder[J]. Explosion And Shock Waves, 2020, 40(2): 024202. doi: 10.11883/bzycj-2019-0057

纳米W粉冲击烧结的分子动力学模拟

doi: 10.11883/bzycj-2019-0057
详细信息
    作者简介:

    刘晓雯(1993- ),女,硕士研究生,m13419519852@163.com

    通讯作者:

    陈鹏万(1971- ),男,博士,教授,pwchen@bit.edu.cn

  • 中图分类号: O383

Molecular dynamics simulation of shock consolidation of nano tungsten powder

  • 摘要: 粉末冲击烧结是制备高品质W的一种有效方法,而分子动力学方法在尺度极小、过程迅速的数值模拟上有着独特的优势。因此运用分子动力学方法,结合W的嵌入原子势,对常温下的纳米W粉末的冲击烧结过程进行模拟,得到颗粒微观压实过程图、体系速度分布云图、p-UpT-UpT-p曲线以及径向分布函数。研究了不同颗粒速度及产生的射流对纳米W粉末冲击烧结影响,分析了微观冲击烧结机理。结果表明,低速冲击条件下(500 m/s以下),纳米颗粒无法压实。高速条件下(1 000 m/s及以上),颗粒能获得致密化很高的压实。颗粒间的相互挤压造成的高应力使颗粒表面的原子发生流动变形,原子向颗粒间空隙流动,形成压实。颗粒间产生的射流以及高速冲击导致的颗粒熔化,均促进烧结获得致密度更高的烧结体。
  • 图  1  图名模型示意图

    Figure  1.  Model illustration

    图  2  压实形貌图

    Figure  2.  Compacted topography

    图  3  1 000 m/s颗粒速度下的冲击压实过程

    Figure  3.  Impact compaction process at 1 000 m/s particle velocity

    图  4  不同的速度下的原子径向分布函数

    Figure  4.  Radial distribution functions at different velocities

    图  5  温度-速度关系

    Figure  5.  Relationship between temperature and particle velocity

    图  6  压力-速度关系

    Figure  6.  Relationship between pressure and particle velocity

    图  7  温度-压力关系

    Figure  7.  Relationship between temperature and pressure

    图  8  不同颗粒速度下体系的速度分布

    Figure  8.  Velocity distribution of the system at different particle velocities

    图  9  模型2压实形貌图

    Figure  9.  Compaction topograph of model 2

  • 韩勇, 范景莲, 刘涛, 等. 高密度纯钨的低温活化烧结工艺及其致密化行为 [J]. 稀有金属材料与工程, 2012, 41(7): 1273–1278. DOI: 10.3969/j.issn.1002-185X.2012.07.032.

    HAN Y, FAN J L, LIU T, et al. Low-temperature activated sintering technology of high-density pure tungsten and its densification behavior [J]. Rare Metal Materials and Engineering, 2012, 41(7): 1273–1278. DOI: 10.3969/j.issn.1002-185X.2012.07.032.
    MARQUIS F D S, MAHAJAN A, MAMALIIS A G. Shock synthesis and densification of tungsten based heavy alloys [J]. Journal of Materials Processing Tech, 2005, 161(1–2): 113–120. DOI: 10.1016/j.jmatprotec.2004.07.060.
    PEIKRISHVILI A, GODIBADZE B, CHAGELISHIVILI E, et al. Hot explosive consolidation of nanostructured tungsten-sliver precursors [J]. European Chemical Bulletin, 2015, 4(1–3): 37–42. DOI: http://dx.doi.org/10.17628/ecb.2015.4.37-42.
    ZHOU Q, CHEN P. Fabrication and characterization of pure tungsten using the hot-shock consolidation [J]. International Journal of Refractory Metals and Hard Materials, 2014, 42(1): 215–220. DOI: 10.1016/j.ijrmhm.2013.09.008.
    DAI C, EAKINS D, THADHANI N, et al. Shock compression response of nanoiron powder compact [J]. Applied Physics Letters, 2007, 90(7): 39. DOI: 10.1063/1.2695522.
    XU J, SAKANOI R, HIGUCHI Y, et al. Molecular dynamics simulation of Ni nanoparticles sintering process in Ni/YSZ multi-nanoparticle system [J]. The Journal of Physical Chemistry C, 2013, 117(19): 9663–9672. DOI: 10.1021/jp310920d.
    ZOHOOR M, MEHDIPOOR A. Numerical simulation of under water explosive compaction process for compaction of tungsten powder [J]. Materials Science Forum, 2008, 566(49): 77–82. DOI: 10.4028/www.scientific.net/MSF.566.77.
    ZOHOOR M, MEHDIPOOR A. Explosive compaction of tungsten powder using a converging under water shock wave [J]. Journal of Materials Processing Technology, 2009, 209(8): 4201–4206. DOI: 10.1016/j.jmatprotec.2008.11.031.
    DAI K D, CHEN P W. Numerical simulation of the shock compaction of W/Cu powders [J]. Materials Science Forum, 2011, 673: 113–118. DOI: 10.4028/www.scientific.net/MSF.673.113.
    EMELCHENKO G A, NAUMENKO I G, VERETENNIKOV V A, et al. Shock consolidation of nanopowdered Ni [J]. Materials Science and Engineering A, 2009, 503(1–2): 55–57. DOI: 10.1016/j.msea.2008.01.097.
    GODIBADZE B, DGEBUADZE A, CHAGELISHVILI E, et al. Dynamic consolidation and investigation of nanostructural W-Cu/W-Y cylindrical billets [J]. Journal of Physics: Conference Series, 2018, 987(1). DOI: 10.1088/1742-6596/987/1/012027.
    DING L, DAVIDCHACK R L, PAN J. A molecular dynamics study of sintering between nanoparticles [J]. Computational Materials Science, 2009, 45(2): 247–256. DOI: 10.1016/j.commatsci.2008.09.021.
    ZHOU X W, JOHNSON R A, WADLEY H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers [J]. Physical Review B, 2004, 69(14): 1124–1133. DOI: 10.1103/PhysRevB.69.144113.
    ZHAO X, WANG S Q, ZHANG C B. Kinetics investigation of sintering of nanometer size metal clusters: a molecular dynamics study [J]. Journal of Materials Science and Technology, 2006, 22(1): 123–126. DOI: 10.3321/j.issn:1005-0302.2006.01.020.
    SONG P, WEN D. Molecular dynamics simulation of the sintering of metallic nanoparticles [J]. Journal of Nanoparticle Research, 2010, 12(3): 823–829. DOI: 10.1007/s11051-009-9718-7.
    KADAU K, ENTEL P, LOMDAHL P S. Molecular-dynamics study of martensitic transformations in sintered Fe-Ni nanoparticles [J]. Computer Physics Communications, 2002, 147(1–2): 126–129. DOI: 10.1016/S0010-4655(02)00230-8.
    ZHU H L. Sintering processes of two nanoparticles: a study by molecular dynamics simulations [J]. Philosophical Magazine Letters, 1996, 73(1): 27–33. DOI: 10.1080/095008396181073.
    TAVAKOL M, MAHNAMA M, NAGHDABADI R. Shock wave sintering of Al/SiC metal matrix nano-composites: a molecular dynamics study [J]. Computational Materials Science, 2016, 125: 255–262. DOI: 10.1016/j.commatsci.2016.08.032.
    ARCIDIACONO S, BIERI N R, POULIKAKOS D, et al. On the coalescence of gold nanoparticles [J]. International Journal of Multiphase Flow, 2004, 30(7): 979–994.
    HENZ B J, HAWA T, ZACHARIAH M. Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles [J]. Journal of Applied Physics, 2009, 105(12): 124310. DOI: 10.1063/1.3073988.
    HENZ B J, HAWA T, ZACHARIAH M. Molecular dynamics simulation of the kinetic sintering of Ni and Al nanoparticles [J]. Molecular Simulation, 2009, 35(10-11): 804–811. DOI: 10.1080/08927020902818021.
    GUNKELMANN N, ROSANDI Y, RUESTES C J, et al. Compaction and plasticity in nanofoams induced by shock waves: a molecular dynamics study [J]. Computational Materials Science, 2016, 119: 27–32. DOI: 10.1016/j.commatsci.2016.03.035.
    CHENG B, NGAN A H W. The sintering and densification behaviour of many copper nanoparticles: a molecular dynamics study [J]. Computational Materials Science, 2013, 74(74): 1–11. DOI: 10.1016/j.commatsci.2013.03.014.
    KART H H, WANG G, KARAMAN I. Molecular dynamics study of the coalescence of equal and unequal sized Cu nanoparticales [J]. International Journal of Modern Physics C, 2009, 20(2): 179–196. DOI: 10.1142/S0129183109013534.
    CHEN L, FAN J L, GONG H R. Phase transition and mechanical properties of tungsten nanomaterials from molecular dynamic simulation [J]. Journal of Nanoparticle Research, 2017, 19(3): 118. DOI: 10.1007/s11051-017-3812-z.
    YOUSEFI M, KHOIE M M. Molecular dynamics simulation of Ni/Cu-Ni nanoparticles sintering under various crystallographic, thermodynamic and multi-nanoparticles conditions [J]. European Physical Journal D, 2015, 69(3): 71. DOI: 10.1140/epjd/e2015-50830-4.
    何安民. 金属铜冲击熔化机制与动力学特性微观模拟研究[D]. 四川绵阳: 中国工程物理研究院, 2014.
    于超, 任会兰, 宁建国. 钨合金冲击塑性行为的分子动力学模拟 [J]. 高压物理学报, 2013, 27(2): 211–215. DOI: 10.11858/gywlxb.2013.02.007.

    YU C, REN H L, NING J G. Molecular dynamics simulation on shock plasticity behavior of tungsten alloy [J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 211–215. DOI: 10.11858/gywlxb.2013.02.007.
    于超. 穿甲弹用钨合金的冲击实验与纳观力学机理模拟研究[D]. 北京: 北京理工大学, 2015.
  • 加载中
图(9)
计量
  • 文章访问数:  5347
  • HTML全文浏览量:  1605
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 修回日期:  2019-04-04
  • 网络出版日期:  2020-01-15
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回