不同晶粒度无氧铜管在爆轰加载下的膨胀及断裂特性

沈飞 王辉 屈可朋 张皋

沈飞, 王辉, 屈可朋, 张皋. 不同晶粒度无氧铜管在爆轰加载下的膨胀及断裂特性[J]. 爆炸与冲击, 2020, 40(2): 022201. doi: 10.11883/bzycj-2019-0063
引用本文: 沈飞, 王辉, 屈可朋, 张皋. 不同晶粒度无氧铜管在爆轰加载下的膨胀及断裂特性[J]. 爆炸与冲击, 2020, 40(2): 022201. doi: 10.11883/bzycj-2019-0063
SHEN Fei, WANG Hui, QU Kepeng, ZHANG Gao. Expansion and fracture characteristics of oxygen-free copper tubes with different grain sizes under detonation loading[J]. Explosion And Shock Waves, 2020, 40(2): 022201. doi: 10.11883/bzycj-2019-0063
Citation: SHEN Fei, WANG Hui, QU Kepeng, ZHANG Gao. Expansion and fracture characteristics of oxygen-free copper tubes with different grain sizes under detonation loading[J]. Explosion And Shock Waves, 2020, 40(2): 022201. doi: 10.11883/bzycj-2019-0063

不同晶粒度无氧铜管在爆轰加载下的膨胀及断裂特性

doi: 10.11883/bzycj-2019-0063
基金项目: 国防技术基础研究计划(JSJL2016208A011)
详细信息
    作者简介:

    沈 飞(1983- ),男,硕士,副研究员,shenf02@163.com

  • 中图分类号: O389; TJ55

Expansion and fracture characteristics of oxygen-free copper tubes with different grain sizes under detonation loading

  • 摘要: 采用平均晶粒尺寸分别为100~300 μm和20~30 μm的两种软态无氧铜加工成$\varnothing $25 mm圆筒试验用标准铜管,通过高速扫描摄影法对比了JO-159加载下两种铜管膨胀位移、比动能曲线的差异;通过分幅摄影法获取了JO-159、TNT加载下铜管的断裂过程,并对比了断裂时间、裂纹扩展方向、破片形状等方面的差异。结果表明:JO-159加载下,细晶铜管虽然延展性较好,但内部少量缺陷会形成明显的孤立增长的孔洞,使得铜管的有效膨胀位移仅略大于粗晶铜管,且两种铜管比动能的相对偏差小于1%;粗晶铜管断裂时首先出现较多随机分布的孔洞,随着炸药猛度的增大,其孔洞的数量增多,裂纹由母线方向变为复杂交错状,破片由条形变为碎散形,但两种工况下的断裂直径均达到初始直径的3倍,满足圆筒试验的基本要求。
  • 图  1  TU1无氧铜的金相组织

    Figure  1.  Metallographic structure of TU1 oxygen-free copper

    图  2  狭缝扫描试验布局图

    Figure  2.  Scanning test layout

    图  3  粗晶铜管的扫描试验底片

    Figure  3.  Scanning test film of copper tube with coarse grains

    图  4  两种铜管的$\Delta {r_{\rm{e}}}{\text{-}} t$曲线

    Figure  4.  $\Delta {r_{\rm{e}}}{\text{-}} t$ curves of copper tubes with different grain sizes

    图  5  两种铜管的$E{\text{-}} \Delta {r_{\rm{e}}}$曲线

    Figure  5.  $E{\text{-}} \Delta {r_{\rm{e}}}$curves of copper tubes with different grain sizes

    图  6  铜管的${E_{\rm{s}}}{\text{-}} \Delta {r_{\rm{e}}}$$\eta {\text{-}} \Delta {r_{\rm{e}}}$曲线

    Figure  6.  Curves of ${E_{\rm{s}}}{\text{-}} \Delta {r_{\rm{e}}}$ and $\eta {\text{-}} \Delta {r_{\rm{e}}}$

    图  7  分幅观测试验布局图

    Figure  7.  Framing observation test layout

    图  8  不同晶粒度铜管膨胀过程的分幅摄影照片

    Figure  8.  Fractional photos of expansion process of copper tubes in different grain sizes

    图  9  粗晶铜管在TNT加载下断裂过程的分幅摄影照片

    Figure  9.  Fractional photos of expansion process of the copper tube with coarse grains under TNT detonation loading

    图  10  不同炸药爆轰加载下的铜管断口形貌

    Figure  10.  Fracture morphologies of the copper tube under detonation loading of different explosives

  • [1] 奥尔连科 Л П. 爆炸物理学: 上册[M]. 孙承纬, 译. 北京: 科学出版社, 2011: 404−405.
    [2] ESCOBEDO J P, DENNIS-KOLLER D, CERRETA E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper [J]. Journal of Applied Physics, 2011, 110(3): 033513. DOI: 10.1063/1.3607294.
    [3] 张凤国, 周洪强. 晶粒尺寸对延性金属材料层裂损伤的影响 [J]. 物理学报, 2013, 62(16): 164601. DOI: 10.7498/aps.62.164601.

    ZHANG F G, ZHOU H Q. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metal [J]. Acta Physica Sinica, 2013, 62(16): 164601. DOI: 10.7498/aps.62.164601.
    [4] 胡海波, 汤铁钢, 胡八一, 等. 金属柱壳在爆炸加载断裂中的单旋现象 [J]. 爆炸与冲击, 2004, 24(2): 97–107.

    HU H B, TANG T G, HU B Y, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells [J]. Explosion and Shock Waves, 2004, 24(2): 97–107.
    [5] 任国武, 郭昭亮, 汤铁钢, 等. 高应变率加载下金属柱壳断裂的实验研究 [J]. 兵工学报, 2016, 37(1): 77–82. DOI: 10.3969/j.issn.1000-1093.2016.01.012.

    REN G W, GUO Z L, TANG T G, et al. Experimental research on fracture of metal case under loading at high strain rate [J]. Acta Armamentrii, 2016, 37(1): 77–82. DOI: 10.3969/j.issn.1000-1093.2016.01.012.
    [6] 李忠盛, 吴护林, 陈韵如, 等. 内爆炸载荷作用下7A55铝合金的动态性能及断裂行为 [J]. 爆炸与冲击, 2012, 32(2): 190–195. DOI: 10.11883/1001-1455(2012)02-0190-06.

    LI Z S, WU H L, CHEN Y R, et al. Dynamic properties and fracture behaviors of 7A55 aluminum alloy under explosive loading [J]. Explosion and Shock Waves, 2012, 32(2): 190–195. DOI: 10.11883/1001-1455(2012)02-0190-06.
    [7] SINGH M, SUNEJA H R, BOLA M S, et al. Dynamic tensile deformation and fracture of metal cylinders at high strain rates [J]. International Journal of Impact Engineering, 2002, 27(2): 939–954. DOI: 10.1016/s0734-743x(02)00002-7.
    [8] GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders [J]. International Journal of Impact Engineering, 2008, 35(12): 1547–1556. DOI: 10.1016/j.ijimpeng.2008.07.081.
    [9] 郭昭亮, 范诚, 刘明涛, 等. 爆炸与电磁加载下无氧铜环、柱壳的断裂模式转变 [J]. 爆炸与冲击, 2017, 37(6): 1072–1079. DOI: 10.11883/1001-1455(2017)06-1072-08.

    GUO Z L, FAN C, LIU M T, et al. Fracture mode transition in expanding ring and cylindrical shell under electromagnetic and explosive loadings [J]. Explosion and Shock Waves, 2017, 37(6): 1072–1079. DOI: 10.11883/1001-1455(2017)06-1072-08.
    [10] REN G W, GUO Z L, FAN C, et al. Dynamic shear fracture of an explosively-driven metal cylindrical shell [J]. International Journal of Impact Engineer, 2016, 95(9): 35–39. DOI: 10.1016/j.ijimpeng.2016.04.012.
    [11] 李亮亮, 沈飞, 王辉, 等. 晶粒细化对无氧铜动态力学性能的影响 [J]. 兵器材料科学与工程, 2019, 42(1): 22–25. DOI: 10.14024/j.cnki.1004-244x.20181023.002.

    LI L L, SHEN F, WANG H, et al. Effect of grain refinement on dynamic mechanical properties of oxygen-free copper [J]. Ordnance Material Science and Engineering, 2019, 42(1): 22–25. DOI: 10.14024/j.cnki.1004-244x.20181023.002.
    [12] 董海山. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989: 146−149.
    [13] 孙占峰, 赵锋, 谷岩, 等.炸药圆筒试验光学扫描和激光干涉联合测试方法: GJB 8381—2015 [S] // 四川绵阳: 中国工程物理研究院, 2015.
    [14] 沈飞, 王辉, 罗一鸣. DNTF基同轴双元装药的爆轰波形及驱动性能 [J]. 含能材料, 2018, 26(7): 614–619. DOI: 10.11943/j.issn.1006-9941.2018.07.011.

    SHEN F, WANG H, LUO Y M. Detonation wave-shape and driving performance of coaxial binary charge of DNTF-based aluminized explosives [J]. Chinese Journal of Energetic Materials, 2018, 26(7): 614–619. DOI: 10.11943/j.issn.1006-9941.2018.07.011.
    [15] SOUERS P C, MINICH R. Cylinder test correction for copper work hardening and spall [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 238–245. DOI: 10.1002/prep.201400135.
    [16] SOUERS P C, LAUDERBACH L, GARZA R, et al. Upgraded analytical model of the cylinder test [J]. Propellants, Explosives, Pyrotechnics, 2013, 38(3): 419–424. DOI: 10.1002/prep.201200192.
    [17] 韩立波. 铜缺陷熔化及其冲击力学行为的分子动力学模拟[D]. 合肥: 中国科技大学, 2010: 97−98.
    [18] KINSLOW R. High-velocity impact phenomena[M]. New York: Academic Press, 1970: 532.
  • 加载中
图(10)
计量
  • 文章访问数:  6040
  • HTML全文浏览量:  1915
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-01
  • 修回日期:  2019-09-17
  • 网络出版日期:  2019-12-25
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回