Penetration and energy release effect of W/ZrNiAlCu metastable reactive alloy composite rragment against RHA target
-
摘要: 为研究W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶板的侵彻释能特性,采用高速摄影弹道枪侵彻实验和能量方程、Avrami-Erofeev方程理论分析的方法,对破片的侵彻释能过程、侵彻规律、释能规律进行了研究。结果表明,破片在撞击并贯穿靶板的过程中激发了材料的燃烧反应,在靶板前方和后方产生了明显火光,随着撞击速度增加,火光范围增加、亮度提高;破片撞击速度、冲塞体速度的关系符合采用能量法推导的包含质量损失的破片侵彻公式,破片理论弹道极限速度为987.1 m·s−1;在实验速度范围内,材料反应效率随着冲击压力的增加而增加,与实验现象吻合。Abstract: To study the penetration and energy release effect of W/ZrNiAlCu metastable reactive alloy composite fragment against RHA target, the penetration tests using high-speed camera and ballistic gun system were conducted. And the energy equation and Arami-Erofeev equation was produced to theoretical analyze the results of penetration tests. The results show that the combustion reaction of fragment is induced by penetration process, which initiates distinct flame in the front of the target and behind the target. The brightness and scope of flame are enhanced with the increase of impact velocity. The relationship between impact velocity and plug velocity conforms to the penetration equation deduced by energy method. The theoretical ballistic limit velocity is 987.1 m/s. The efficiency of reaction is enhanced with the increase of impact pressure within the experimental velocities, which consistent with the experiment.
-
表 1 破片侵彻实验结果
Table 1. Experimental results of fragments penetration
编号 m/g vi/(m·s−1) vp/(m·s−1) p/GPa 是否穿透 1# 6.65 726 − 16.46 否 2# 6.54 810 − 18.63 否 3# 6.39 995 − 23.62 否 4# 6.68 973 34 23.01 是 5# 6.80 1 067 137 25.63 是 6# 6.72 1 144 176 27.83 是 7# 6.37 1 159 131 28.26 是 8# 6.65 1 240 195 30.64 是 9# 6.51 1 295 317 32.28 是 10# 6.56 1 359 397 34.21 是 11# 6.68 1 508 497 38.85 是 表 2 W/ZrNiAlCu亚稳态合金复合材料参数[13]
Table 2. Parameters of W/ZrNiAlCu metastable reactive alloy composite
材料 C0/(m∙s−1) s γ0K αV/(10−5·K−1) CV/(J·g−1·K−1) Ea/(kJ·mol−1) n W/ZrNiAlCu 3 417 1.732 1.629 1.559 0.182 459.25 0.347 -
[1] 张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731–739. DOI: 10.3969/jissn.1006-9941.2009.06.021.ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731–739. DOI: 10.3969/jissn.1006-9941.2009.06.021. [2] XU F Y, ZHENG Y F, YU Q B, et al. Experimental study on penetration behavior of reactive material projectile impacting aluminum plate [J]. International Journal of Impact Engineering, 2016, 95: 125–132. DOI: 10.1016/j.ijimpeng.2016.05.007. [3] ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113: 083508. DOI: 10.1063/1.4793281. [4] ZHANG X F, SHI A S, ZHANG J, et al. Thermochemical modeling of temperature controlled shock-induced chemical reactions in multifunctional energetic structural materials under shock compression [J]. Journal of Applied Physics, 2012, 111: 123501. DOI: 10.1063/1.4729048. [5] XIONG W, ZHANG X F, WU Y, et al. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540–549. DOI: 10.1016/j.jallcom.2015.07.004. [6] XIONG W, ZHANG X F, TAN M T, et al. The energy release characteristics of shock-induced chemical reaction of Al/Ni composites [J]. The Journal of Physical Chemistry C, 2016, 120: 24551–24559. DOI: 10.1021/acs.jpcc.6b06530. [7] WANG H F, ZHENG Y F, YU Q B. Impact-induced initiation and energy release behavior of reactive materials [J]. Journal of Applied Physics, 2011, 110: 074904. DOI: 10.1063/1.3644974. [8] LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials and Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107. [9] XU F Y, YU Q B, ZHENG Y F, et al. Damage effects of double-spaced aluminum plates by reactive material projectile impact [J]. International JournalofImpactEngineering, 2017, 104: 13–20. DOI: 10.1016/j.ijimpeng.2017.01.023. [10] 经福谦. 实验物态方程导引(第二版) [M]. 北京, 科学出版社, 1999: 209−370.JING F Q. Experimental state equation guidance (second edition) [M]. Beijing: Science Press, 1999: 209−370. [11] ROSENBERG Z, DEKEL E. 终点弹道学 [M]. 钟方平, 译. 北京: 国防工业出版社, 2014: 120−135. [12] 谭华. 实验冲击波物理导引[M]. 北京: 国防工业出版社, 2007: 15−61.TAN H. Introduction to experimental shock-wave physics [M]. Beijing: National Defense Industry Press, 2007: 15−61. [13] 余志统. 钨/多元非晶合金复合材料破片侵彻及冲击释能研究[D]. 石家庄: 陆军工程大学, 2018.YUZ T. Study on penetration and energy release of tungsten/multi-element amorphous alloy composite fragments [D]. Shijiazhuang: Army Engineering University, 2018. 期刊类型引用(8)
1. 贾杰,智小琦,郝春杰,李劲,郭璐,柳星河. Zr基非晶破片对碳纤维复合靶及后效铝靶的侵彻试验研究. 高压物理学报. 2024(02): 130-139 . 百度学术
2. 杨林,于述贤,范群波. Zr_(77.1)Cu_(13)Ni_(9.9)非晶合金破片侵彻LY12铝合金及TC4钛合金靶板毁伤后效及机理对比研究. 北京理工大学学报. 2023(04): 417-428 . 百度学术
3. 熊玮,张先锋,李逸,谈梦婷,刘闯,侯先苇. 活性材料冲击压缩及反应行为模拟方法研究进展. 北京理工大学学报. 2023(10): 995-1015 . 百度学术
4. 芦永进,梁增友,邓德志,朱聪. 铜基非晶合金双层药型罩射流形成及侵彻性能. 火炮发射与控制学报. 2022(01): 14-20+28 . 百度学术
5. 郭志平,王飞,姜波,张杰,程波,王传婷,何勇. ZrCuAlNi合金的Taylor撞击断裂行为研究. 兵器装备工程学报. 2022(05): 185-190 . 百度学术
6. 尚春明,施冬梅,张云峰,徐雪涛. Zr基非晶合金毁伤研究进展. 兵器装备工程学报. 2020(07): 182-186 . 百度学术
7. 陈海华,张先锋,熊玮,刘闯,魏海洋,汪海英,戴兰宏. WFeNiMo高熵合金动态力学行为及侵彻性能研究. 力学学报. 2020(05): 1443-1453 . 百度学术
8. 何丽灵,张方举,颜怡霞,谢若泽,徐艾民,周燕良. Ti-6Al-4V弹体破坏模式对冲击反应的影响研究. 爆炸与冲击. 2020(12): 58-69 . 本站查看
其他类型引用(1)
-