含水率对非饱和钙质砂动力特性影响的试验研究

赵章泳 邱艳宇 紫民 邢化岛 王明洋

赵章泳, 邱艳宇, 紫民, 邢化岛, 王明洋. 含水率对非饱和钙质砂动力特性影响的试验研究[J]. 爆炸与冲击, 2020, 40(2): 023102. doi: 10.11883/bzycj-2019-0066
引用本文: 赵章泳, 邱艳宇, 紫民, 邢化岛, 王明洋. 含水率对非饱和钙质砂动力特性影响的试验研究[J]. 爆炸与冲击, 2020, 40(2): 023102. doi: 10.11883/bzycj-2019-0066
ZHAO Zhangyong, QIU Yanyu, ZI Min, XING Huadao, WANG Mingyang. Experimental study on dynamic compression of unsaturated calcareous sand[J]. Explosion And Shock Waves, 2020, 40(2): 023102. doi: 10.11883/bzycj-2019-0066
Citation: ZHAO Zhangyong, QIU Yanyu, ZI Min, XING Huadao, WANG Mingyang. Experimental study on dynamic compression of unsaturated calcareous sand[J]. Explosion And Shock Waves, 2020, 40(2): 023102. doi: 10.11883/bzycj-2019-0066

含水率对非饱和钙质砂动力特性影响的试验研究

doi: 10.11883/bzycj-2019-0066
详细信息
    作者简介:

    赵章泳(1992- ),男,博士研究生,zhaozhangyong1@126.com

    通讯作者:

    王明洋(1966- ),男,博士,教授,博士生导师,wmyrf@163.com

  • 中图分类号: O341; O344

Experimental study on dynamic compression of unsaturated calcareous sand

  • 摘要: 使用经过系统标定的霍普金森压杆试验装置对不同含水率钙质砂进行了在准一维应变条件下的动态压缩试验,试样的平均应变率为209~1 137 s−1。试验结果表明:半导体应变片灵敏系数和压杆弥散关系的标定对试验结果的准确性具有重要影响;当钙质砂应变小于0.025时潮湿试样的切向模量高于干燥试样,而在应变大于0.025时则相反;潮湿钙质砂的切线模量随含水率的增加先减后增。通过分析非饱和钙质砂在锁变后其轴向应力应变曲线及侧压力系数的变化规律,提出了非饱和钙质砂锁变现象的模型。
  • 图  1  钙质砂颗粒分配曲线

    Figure  1.  The particle distribution curve of calcareous sand

    图  2  SHPB试验系统示意图

    Figure  2.  The schematic diagram of SHPB system

    图  3  压杆弥散关系的标定

    Figure  3.  Calibration of dispersion of the bar

    图  4  半导体应变片标定结果

    Figure  4.  Calibration results of the semiconductor strain gauge

    图  5  装样容器

    Figure  5.  Specimen container

    图  6  压杆三维效应的修正对轴向应力(σz)测试结果

    Figure  6.  Effect of three dimensional effect correction of the bar on test results on axial stress (σz)

    图  7  不同含水率下钙质砂的轴向应力(σz)应变(εz)曲线

    Figure  7.  The axial stress (σz)-strain (εz) curves of calcareous sand with different water contents

    图  8  含水率对钙质砂轴向应力(σz)应变(εz)关系的影响

    Figure  8.  Effect of water content on axial stress (σz)-strain (εz) relation of calcareous sand

    图  9  30%含水率试样的侧压力系数时程曲线

    Figure  9.  Lateral pressure coefficient time profile of specimen with 30% water content

    图  10  侧压力系数(k0)与轴向应力峰值((σz)max)关系

    Figure  10.  The relationship between lateral pressure coefficient (k0) and peak axial stress ((σz)max)

    图  11  锁变现象中封闭孔隙的示意图

    Figure  11.  The schematic diagram of a closed pore in a locking-up phenomenon

    表  1  半导体应变片标定结果

    Table  1.   Calibration results of semiconductor strain gauges

    信号类型K1K2R2
    入射杆压缩波91.09 2750.997
    入射杆拉伸波95.01 8900.998
    透射杆压缩波93.64 5000.998
    透射杆拉伸波97.11 5370.999
    下载: 导出CSV

    表  2  SHPB试验工况表

    Table  2.   Test table of SHPB experiments

    干密度/(g∙cm−3)名义含水率/%试验组编号平均子弹速度/(m∙s−1)平均应变率/s−1
    1.401CS00121.431 128
    CS002 9.78 487
    CS003 4.02 335
    1.4010CS10118.521 118
    CS102 9.03 551
    CS103 3.62 242
    1.4020CS20118.041 137
    CS202 9.01 533
    CS203 3.61 209
    1.4030CS30118.14 836
    CS302 9.13 522
    CS303 3.56 243
    下载: 导出CSV

    表  3  非饱和砂土锁变现象试验结果的统计

    Table  3.   Experimental results of unsaturated sands with locking-up phenomenon

    结果$\dot \varepsilon $/s-1(σz)max/MPa砂土种类Cue0Sr/%M/GPaR
    Veyera[12]1 000220Eglin石英砂3.410.51 603.320.56
    802.850.44
    180Tyndall石英砂1.180.654803.650.82
    211Ottawa石英砂1.50.545803.240.86
    Luo[34] 600300Quikrete 砂2.330.55 640.68
    850.59
    Barr[13]3 500240松散石英砂2.20.77 253.171.02
    523.351.01
    本文 500 70密实钙质砂>61.01 571.02
    862.341.11
     注:$\dot \varepsilon $为应变率;Cu为不均匀系数;e0为初始孔隙比;Sr为试样饱和度;M为锁变模量。
    下载: 导出CSV
  • 刘崇权, 杨志强, 汪稔. 钙质土力学性质研究现状与进展 [J]. 岩土力学, 1995(4): 74–84.

    LIU C Q, YANG Z Q, WANG R. The present condition and development in studies of mechanical properties of calcareous soils [J]. Rock and Soil Mechanics, 1995(4): 74–84.
    DATTA M, RAO G V, GULHATI S K. The nature and engineering behavior of carbonate soils at Bombay High, India [J]. Marine Geotechnology, 1981, 4(4): 307–341. DOI: 10.1080/10641198109379830.
    STERIANOS B. Geotechnical properties of carbonate soils with reference to an improved engineering classification [D]. Rondebosch: University of Cape Town, 1988: 1−4.
    ALBA J L, AUDIBERT J M. Pile design in calcareous and carbonaceous granular materials, and historic review [C] // Proceedings of the 2nd international conference on engineering for calcareous sediments. Rotterdam: AA Balkema. 1999, 1: 29−44.
    WANG X, JIAO Y, WANG R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea [J]. Engineering Geology, 2011, 120(1): 40–47. DOI: 10.1016/j.enggeo.2011.03.011.
    曹梦, 叶剑红. 南海钙质砂蠕变-应力-时间四参数数学模型 [J]. 岩土力学, 2019(5): 1771–1777. DOI: 10.16285/j.rsm.2018.1267.

    CAO M, YE J H. Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea [J]. Rock and Soil Mechanic, 2019(5): 1771–1777. DOI: 10.16285/j.rsm.2018.1267.
    AL-DOURI R H, POULOS H G. Static and cyclic direct shear tests on carbonate sands [J]. Geotechnical Testing Journal, 1992, 15(2): 138–157. DOI: 10.1520/GTJ10236J.
    COOP M R. The mechanics of uncemented carbonate sands [J]. Géotechnique, 1990, 40(4): 607–626. DOI: 10.1680/geot.1990.40.4.607.
    COOP M R, ATKINSON J H. The mechanics of cemented carbonate sands [J]. Géotechnique, 1993, 43(1): 53–67. DOI: 10.1680/geot.1993.43.1.53.
    文祝, 邱艳宇, 紫民, 等. 钙质砂的准一维应变压缩试验研究 [J]. 爆炸与冲击, 2019, 39(3): 1–11. DOI: 10.11883/bzycj-2018-0015.

    WEN Z, QIU Y Y, ZI M, et al. Experimental study on quasi-one-dimensional strain compression of calcareous sand [J]. Explosion and Shock Waves, 2019, 39(3): 1–11. DOI: 10.11883/bzycj-2018-0015.
    魏久淇, 王明洋, 邱艳宇, 等. 钙质砂动态力学特性试验研究 [J]. 振动与冲击, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002.

    WEI J Q, WANG M Y, QIU Y Y, et al. Impact compressive response of calcareous sand [J]. Journal of Vibration and Shock, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002.
    VEYERA G E. Uniaxial stress-strain behavior of unsaturated soils at high strain rates: WR-TL-93-3523 [R]. Fort Belvoir, VA: Defense Technical Information Center, 1994.
    BARR A D, CLARKE S D, TYAS A, et al. Effect of moisture content on high strain rate compressibility and particle breakage in loose sand [J]. Experimental Mechanics, 2018, 58(8): 1331–1334. DOI: 10.1007/s11340-018-0405-4.
    王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2010: 52−60.
    胡时胜, 唐志平, 王礼立. 应变片技术在动态力学测量中的应用 [J]. 实验力学, 1987(2): 75–84.

    HU S S, TANG Z P, WANG L L. Application of strain gage technique in dynamic measurement [J]. Journal of Experimental Mechanics, 1987(2): 75–84.
    BUSSAC M N, COLLET P, GARY G, et al. An optimization method for separating and rebuilding one-dimensional dispersive waves from multi-point measurements: application to elastic or viscoelastic bars [J]. Journal of the Mechanics and Physics of Solids, 2002, 50(2): 321–349. DOI: 10.1016/S0022-5096(01)00057-6.
    TYAS A, WATSON A J. An investigation of frequency domain dispersion correction of pressure bar signals [J]. International Journal of Impact Engineering, 2001, 25(1): 87–101. DOI: 10.1016/S0734-743X(00)00025-7.
    TYAS A, POPE D J. Full correction of first-mode Pochammer-Chree dispersion effects in experimental pressure bar signals [J]. Measurement Science and Technology, 2005, 16(3): 642. DOI: 10.1088/0957-0233/16/3/004.
    BACON C. An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar [J]. Experimental Mechanics, 1998, 38(4): 242–249. DOI: 10.1007/BF02410385.
    LOVE A E H. A Treatise on the mathematical theory of elasticity [M]. 4th ed. New York: Dover Publications, 1944: 289−291.
    SONG B, CHEN W, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777–785. DOI: 10.1016/j.mechmat.2009.01.003.
    MARTIN B E, KABIR M E, CHEN W. Undrained high-pressure and high strain-rate response of dry sand under triaxial loading [J]. International Journal of Impact Engineering, 2013, 54: 51–63. DOI: 10.1016/j.ijimpeng.2012.10.008.
    SEMBLAT J, LUONG M P, GARY G. 3D-Hopkinson bar: new experiments for dynamic testing on soils [J]. Soils and Foundations, 1999, 39(1): 1–10. DOI: 10.3208/sandf.39.1.
    KABIR E. Dynamic behavior of granular materials [D]. Indiana: Purdue University, 2010: 13−35.
    FARR J V. Loading rate effects on the one-dimensional compressibility of four partially saturated soils [R]. Army Engineer Waterways Experiment Station Vicksburg MS Structures LAB, 1986: 373.
    谢定义. 非饱和土土力学[M]. 北京: 高等教育出版社, 2015: 10.
    MULILIS J P, ARULANANDAN K, MITCHELL J K, et al. Effects of sample preparation on sand liquefaction [J]. Journal of the Geotechnical Engineering Division, 1977, 103(2): 91–108.
    LADD R S. Specimen preparation and cyclic stability of sands [J]. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 1977, 103: 535–547.
    JUANG C H, HOLTZ R D. Fabric, pore size distribution, and permeability of sandy soils [J]. Journal of Geotechnical Engineering, 1986, 112(9): 855–868. DOI: 10.1061/(ASCE)0733-9410(1986)112:9(855).
    NIMMO J R, AKSTIN K C. Hydraulic conductivity of a sandy soil at low water content after compaction by various methods [J]. Soil Science Society of America Journal, 1988, 52(2): 303–310. DOI: 10.2136/sssaj1988.03615995005200020001x.
    PIERCE J, CHARLIE W A. High-intensity compressive stress wave propagation through unsaturated sands: ESL-TR-90-12 [R]. Tyndall: Air Force Engineering and Services Center, 1990.
    MARTIN B E, CHEN W, SONG B, et al. Moisture effects on the high strain-rate behavior of sand [J]. Mechanics of Materials, 2009, 41(6): 786–798. DOI: 10.1016/j.mechmat.2009.01.014.
    FELICE C W. The response of soil to impulse loads using the split-Hopkinson pressure bar technique [D]. Utah: The University of Utah, 1986: 246−291.
    LUO H Y, COOPER W L, LU H B. Effects of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates [J]. International Journal of Impact Engineering, 2014, 65: 40–55. DOI: 10.1016/j.ijimpeng.2013.11.001.
    BLOUIN S E, KWANG J K. Undrained compressibility of saturated soil: DNA-TR-87-42 [R]. USA: ARA, 1984.
    AKERS S A. Two-dimensional finite element analysis of porous geomaterials at multikilobar stress levels [D]. Virginia: Virginia Tech., 2001: 124.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  5878
  • HTML全文浏览量:  1717
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-04
  • 修回日期:  2019-05-23
  • 网络出版日期:  2020-01-25
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回