Study on similarity law of non-proportionally scaled penetration/perforation test
-
摘要: 高速侵彻弹体的弹载部件/关键元器件的生存性与可靠性考核是引战系统研制领域的热点与难点问题,受原型试验的成本限制,利用缩比弹体搭载原型引信部件开展非等比例缩比试验研究是可行途径。针对传统等比例缩比方案无法满足弹体刚体过载相似性要求的情况,研究了非等比例缩比侵彻/贯穿相似规律,提出了非等比例缩比侵彻试验设计方法。数值计算结果表明:侵彻半无限厚混凝土靶条件下,非等比例缩比弹刚体过载的脉宽、幅值均可实现与原型弹刚体过载一致的加载条件;贯穿多层薄靶的条件下,通过调节靶板布置及弹体初速等试验工况,合理设计缩比弹体结构,可使非等比例缩比试验的弹体刚体过载峰值和脉宽覆盖原型试验。通过缩比模型试验得到的刚体过载特性可以为弹体及引信部件抗过载防护设计提供可靠的参考依据。Abstract: Survivability and reliability assessment of components/key components on high-speed penetrating projectiles is a hot and difficult issue in the field of EPW development. Due to the cost limitation of prototype test, it is feasible to carry out non-proportionally scale experimental research by carrying prototype fuze components on scaled projectiles. Through the analysis of the process mechanism of a projectile penetrating concrete target, the analytic solution of rigid-body deceleration when the projectile penetrating the semi-infinite thick concrete target and the multi-layer thin concrete target are discussed respectively. From the point of view of similarity of rigid-body deceleration, the non-proportionally reduced-scale criterion of projectile is proposed when the traditional scaling scheme can not meet the requirements of similarity. The numerical results show that under the condition of penetrating semi-infinite thick concrete target, the rigid-body deceleration of the non-proportionally reduced-scale projectile can achieve the same conditions as which of the prototype projectile from the point of view of pulse width and amplitude; under the condition of penetrating multi-layered thin target, through reasonably setting the scale factor and adjusting the layout of the target plate and the initial velocity of the projectile. The pulse width and amplitude of the rigid-body deceleration in the reduced scale test can cover them in the prototype test. The rigid body deceleration characteristics obtained from scaled model test can provide reliable overload environment reference for missile projectile design.
-
爆炸复合是利用炸药爆炸瞬间产生的大功率能量, 使被加工的复板材料产生塑性变形、运动、与基板撞击、熔化并达到原子间结合的一种技术[1]。目前, 仅利用炸药一侧能量的单面爆炸复合技术, 已经进行了很多深入的计算和研究[2-4]。由于仅利用了炸药一侧的能量, 所以大部分能量以冲击波的形式释放在空间, 导致能量利用率极低; 爆炸产生的噪声, 即使在5公里之外仍能达到80~90 db。该技术还存在如下问题:装药方式落后、工作量大, 粉尘污染严重、损害操作人员身心健康, 厚度和平整程度完全依靠经验、无法保障炸药的密度、均匀性和产品质量。
本文中结合一种保证装药质量的蜂窝结构炸药, 在现行平行式裸露装药的爆炸复合结构基础上, 在裸露装药上方平行对称的加上一组待复合的复板和基板, 采用一次起爆复合二块复合板的双面爆炸复合方法, 以不锈钢板和Q235钢板为研究对象进行双面爆炸复合试验, 并通过理论计算得到爆炸复合窗口及复板的碰撞速度, 预测双面爆炸复合的实验结果。
1. 实验材料及参数的计算
1.1 基复板材料
实验选择3 mm厚的304不锈钢作为复板, 16 mm厚的Q235普碳钢作为基板。表 1中列出了复合材料的力学性能, 其中:ρ为密度, σ为极限强度, c为声速。
表 1 爆炸复合材料的主要力学性能Table 1. Main mechanical properties of bonded meterials材料 ρ/(kg·m-3) σ/MPa c/(m·s-1) 材料 ρ/(kg·m-3) σ/MPa c/(m·s-1) 不锈钢 7 900 560 5 790 Q235钢 7 800 450 5 200 1.2 蜂窝结构炸药
本文中选用与黄蜂蜂窝结构类似的蜂窝铝材料, 如图 1所示。将炸药(本文中所用炸药为含5%玻璃微球的乳化炸药)填充至蜂窝材料的空腔中, 形成爆炸复合专用的蜂窝结构炸药, 如图 2所示。药高由蜂窝材料的厚度直接控制。爆炸复合采用如图 3所示的双面爆炸复合方法布置。黄蜂蜂窝结构为自然界中最稳定的结构之一, 由于受到结构稳定的蜂窝材料和双面复板的多向约束, 炸药的临界厚度显著降低。乳化炸药在无约束情况下, 临界直径为14~16 mm[5]。对蜂窝结构炸药在双面爆炸复合中的临界厚度进行测试, 得到炸药厚度为3和4 mm时, 爆轰可分别传至距起爆端10和17 cm处, 在厚度为5 mm时, 炸药可稳定爆轰。这节约了炸药量, 并拓宽了乳化炸药和其他炸药的应用空间。
利用滑移爆轰下复板的一维格尼(Gurney)公式[6]计算复板的碰撞速度:
v2de0=6r13+r1+(r1+2)r22(2+r2/r1+6/r1)/[(r2+2)2r1] (1) 式中:vd为两侧被抛掷金属板的速度, r1、r2为单位面积炸药的质量和复板的质量比, e0为格尼能。
单面复合爆炸中, r2=0, 复板碰撞速度计算公式为:
vs=√2e0√3r5+r+4/r (2) 式中:vs为复板获得的速度, r单位面积上炸药与复板的质量比。
双面爆炸复合中, 上下侧的复板完全相同, 则质量比r1=r2=r, 因此:
vd=√2e0√3r/(6+r) (3) 在工艺参数相同的情况下:
vd/vs=√(r2+5r+4)/(6r+r2) (4) 取r=0.37, 则有vd/vs=1.59。这说明, 在工艺参数相同的情况下, 双面爆炸复合的碰撞速度是单面爆炸焊接的1.59倍, 为达到相同的碰撞速度, 双面爆炸复合的炸药量更少。
1.3 双面爆炸复合窗口的理论计算
由爆炸复合理论可知, 爆炸复合参数主要有3个:复板碰撞速度、动态碰撞角、爆速。而这3个参数之间又满足一定的几何关系。因此, 3个变量中只有2个变量是独立的。下面以复板的碰撞速度和炸药爆速为设计参量进行相应的计算。
(1) 最小复板碰撞速度的计算。
采用等效正碰撞激波模型, 最小复板碰撞速度计算公式为[7]:
vmin=2pmin/(cfρf) (5) 式中:cf为复板中的声速; ρf为复板材料的密度; pmin为实现复合所需的最小冲击压力, 对于不锈钢Q235的复合, 可取pmin=4.5 GPa。结合式(5)和表 1计算可得vmin=197 m/s。
(2) 最大复板碰撞速度的计算。
采用H.K.Wylie等[8]提出的最大复板碰撞速度计算公式:
vmax=√2e/(ρfdf) (6) 式中:df为复板厚度; e为材料在可焊条件下, 复板单位面积所具有的最大能量。对于不锈钢/钢的复合, 取e=7.54 MJ/m2, 实验中复板厚度为3 mm, 由(6)式计算vmax=798 m/s。
(3) 炸药爆速的选择。
碰撞射流形成的理论驻点压力须远大于材料强度, 使材料表面达到流动状态, 顺利形成金属射流。这一限制规定了平行复合时的碰撞点移动速度vp须达到最小值vp, min, 该最小值称为流动限。Ezra等认为碰撞点压力应大于材料静强度的10~12倍, 爆炸复合的碰撞才进入流动状态[9], 即:
vp,min=a√σ/ρ (7) 式中:系数a的取值范围为4.47 < a < 4.90, 由表 1中材料的强度可计算得出vp, min=1 190 m/s。平行法爆炸复合中, 碰撞点移动速度等于炸药爆速, 所以炸药爆速应高于流动限, 即vD, min=1 190 m/s。
声速限限制了射流形成过程中的能量。当碰撞点移动速度vp大于材料的体积声速时, 射流就不可能产生。所以为了保证形成射流, vp一般不应大于材料声速的1.2倍, 最好是小于材料声速。声速限的计算公式为[9]:
vp,max=cmin (8) 式中:cmin为材料体积声速; 当材料不同时, 取组合材料中体积声速的最小值。在平行法爆炸复合中, 碰撞点移动速度等于炸药的爆速, 所以炸药爆速的应低于钢中的声速, 即vD, max=5 200 m/s。
2. 双面爆炸复合实验
实验中选择3 mm厚的不锈钢板为复板, 16 mm厚的Q235钢为基板, 所用炸药爆速为4 900 m/s, 双面爆炸复合装置深埋于砂土中, 实验共分2组。表 2列出了2组实验的参数, 其中:h为间隙; d为炸药厚度; l1f、l2f、l3f分别为复板3个方向上的尺寸; l1b、l2b、l3b分别为基板3个方向上的尺寸。
表 2 爆炸复合材料的主要力学性能Table 2. Main mechanical properties of bonded meterials实验 l1f/mm l2f/mm l3f/mm l1b/mm l2b/mm l3b/mm h/mm d/mm r 1 300 150 3 300 150 16 9 10 0.49 2 300 75 3 300 150 16 9 7 0.37 利用(3)式对双面复合结果进行预测。由于没有乳化炸药的格尼能e0数据, 利用e0≈0.6Qv计算该参数[10], Qv为炸药爆热。乳化基质组分的相关数据列于表 3, 其中w为质量分数, 利用文献[11]的计算方法, 得到乳化炸药的爆热为2 966.84 kJ/kg。利用所得到的爆热和表 2中的质量比, 计算得到二组复板的碰撞速度:v1=898 m/s, v2=787 m/s。
表 3 乳化基质的组分Table 3. Component of the emulsion matrix成分 w/% NH4NO3 75 NaNO3 10 C12H26 1 C24H44O6 2 C18H38 4 H2O 8 由2组复板的碰撞速度可以看出, 仅第2组复板的碰撞速度落在爆炸复合窗口内。按照表 2中的工艺参数进行爆炸复合实验。由于爆炸复合装置深埋在砂土中, 炸药两侧的基复板所受到的约束情况一致, 爆炸复合质量相对也是一致的, 所以任取2块复合板中的一块取样做金相分析即可, 图 4和图 5为第2组复合板经线切割所取试样的金相图。
第1组实验中, 由一维格尼公式计算得到的复板碰撞速度为898 m/s, 超过了可焊窗口的最大极限速度798 m/s, 碰撞速度过高。实验结果为2块复板均与2块基板分离, 分析原因:由于碰撞速度已超过爆炸复合上限, 对应的爆炸复合能量也就过大, 复合界面沉积的热量过高, 爆炸复合结束后界面仍处于热软化状态, 反射的稀疏波就会拉开复合界面, 造成爆炸复合失效, 即造成复板与基板的分离。
第2组实验中, 由一维格尼公式计算得到的复板碰撞速度为787 m/s, 未超过可焊窗口的最大极限速度798 m/s, 因此结合质量较好。图 4所示结合界面为波长为95~120 μm、波高为25~35 μm连续的波状结合界面。图 5是放大的单个波形图, 图中A所指的波前涡与其他区域颜色不同, 为极薄的熔化层, 说明结合界面熔化量较小。一般认为爆炸复合具有3种形式的波状界面[12]:微波、小波、大波, 这里所得到的不锈钢/Q235钢结合界面与微波状界面尺寸(波长一般在100 μm左右, 波高在20 μm左右)基本一致。微波状结合和大(小)波状结合相比, 几乎没有过渡区域、没有缝隙和疏松状的“空洞物”等缺陷, 因此微波状结合的第2组爆炸复合具有较高的结合强度。
由第2组实验可以看出, 本文中所使用的高爆速炸药, 可以满足爆炸复合的要求, 爆炸复合产生了结合强度较高的微波状的结合界面。与传统的爆炸复合所用的低爆速炸药相比, 爆速越高所对应的爆轰压力和爆炸产物的能量也就越高, 提供给复板的加速度就越大, 为使复板达到与使用的低爆速炸药产生相同的碰撞速度, 所用的炸药量相对也就越少。
乳化炸药在无约束的情况下, 临界直径为14~16 mm, 因此用于现行的单面爆炸复合时, 炸药厚度应至少为14~16 mm, 且一次起爆仅得到一块复合板。该7 mm厚的蜂窝结构炸药用于双面爆炸复合时, 一次起爆可复合2块复合板, 在复合相同数量复合板的情况下, 炸药使用量减少了77%。
3. 结论
(1) 双面爆炸复合方法中两复板和蜂窝铝的多向约束, 可以有效的降低炸药稳定爆轰的临界直径, 乳化炸药在厚度为5 mm时, 仍能稳定爆轰; 双面爆炸复合使炸药爆炸产生的能量绝大部分用于材料的复合, 对于不锈钢/钢的复合炸药量节省了77%, 以冲击波的形式释放在空间的能量明显降低, 爆炸产生的噪音得到控制, 炸药爆炸的能量利用率更高, 节能减排有利于环境保护。
(2) 实验中选用的是高爆速炸药, 爆速越高, 对应的爆轰压力和爆炸产物的能量越高, 提供给复板的加速度也就越大, 复板达到与使用的低爆速炸药产生相同的碰撞速度时所用的炸药量也就相对越少。
(3) 针对不锈钢/Q235钢进行的双面爆炸复合实验, 爆炸复合界面的结合形态中均匀细小的微波状结合, 其波长为95~120 μm、波高为25~35 μm, 由于缝隙较小、空洞较少具有较高的结合强度, 结果表明双面爆炸复合切实可行。
(4) 所采用的爆炸复合参数计算准确的描绘了不锈钢/Q235钢的可悍性窗口, 并通过一维格尼公式计算了复板的碰撞速度, 不锈钢/Q235钢的爆炸复合实验表明, 计算能较好的预测实验结果。
-
表 1 模型和原型物理量缩比因子
Table 1. Scaling factors of physical quantities between model and prototype
变量 量纲 原型与模型参量比 缩比因子 特征尺寸 L lp/lm n 时间 T tp/tm n 质量 M Mp/Mm n3 密度 ML−3 ρp/ρm 1 应力 ML−1T−2 σp/σm 1 过载 LT−2 ap/am 1/n 速度 LT−1 Vp/Vm 1 表 2 原型弹的弹靶参数
Table 2. Expemrimental parameters of prototype projectiles and targets
弹型 D/mm M/kg l/mm ηCRH v0/(m∙s−1) ρt/(kg∙m-3) fc/MPa Ⅰ 250 500 2 000 3.5 450 2 420 45 Ⅱ 380 1 200 2 500 3.5 850 2 420 45 表 3 缩比系数表
Table 3. Scaling parameters of prototype projectiles
缩比弹序号 λD λM λb λe 1 1.50 2.25 1.20 1.20 2 2.00 4.00 1.30 1.20 3 2.50 6.25 1.50 1.20 4 3.00 9.00 1.60 1.20 表 4 Ⅱ型(1 000 kg级)弹原型试验及对应的缩比试验参数
Table 4. Prototype test and corresponding scaling test parameters of type II (1 000 kg) projectile
量 原型试验 缩比试验 相关缩比系数 M/kg 1 200 80 λM=15 l/mm 2 500 890 λl=2.8 D/mm 380 150 λD=2.5 ηCRH 3 3 v0/(m∙s−1) 850 850 λv0=1 θ0/(°) 0/10/15 0/10/15 H/mm 300+180×9 300+140×9 λH=1和1.35 z/mm 3 000 2 900 λz=0.97 σbc/MPa 40 30 λfc=0.75 注:z为靶间距;σbc为靶材料抗压强度。 表 5 1 000 kg级原型弹及其缩比弹自由状态下前20阶模态频率
Table 5. Top 20 modal frequencies of 1 000 kg class prototype projectile and reduced scale projectile in free state
模态序号 模态频率/Hz 模态序号 模态频率/Hz 原型弹 缩比弹 原型弹 缩比弹 7 335.67 1 159.2 14 1 416.2 4 670.5 8 335.67 1 159.2 15 1 453.2 4 670.5 9 716.72 2 132.5 16 2 012.8 6 291.2 10 833.99 2 708.3 17 2 012.8 6 291.2 11 833.99 2 708.3 18 2 200.1 6 463.9 12 1 085.9 3 196.4 19 2 236.0 7 044.5 13 1 416.2 4 563.3 20 2 633.9 8 244.7 -
[1] 王树有, 顾晓辉, 赵有守. 混凝土侵彻试验相似准则验证分析 [J]. 南京理工大学学报(自然科学版), 2005, 29(5): 43–46. DOI: 10.3969/j.issn.1005-9830.2005.05.011.WANG S Y, GU X H, ZHAO Y H. Experimental analysis of simularity criteria for concrete penetration [J]. Journal of Nanjing University of Science and Technology (Natural Science), 2005, 29(5): 43–46. DOI: 10.3969/j.issn.1005-9830.2005.05.011. [2] 王世虎. 硬目标侵彻中的加速度信号研究[D]. 北京: 北京理工大学, 2010: 5−30. [3] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2. [4] FREW D J, FORRESTAL M J, Cargile J D. The effect of concrete target diameter on proticle deceleration and penetration depth [J]. International Journal of Impact Engineering, 2006, 32(10): 1584–1594. DOI: 10.1016/j.ijimpeng.2005.01.012. [5] XU Y, KEER L M, LUK V K. Elastic-cracked model for penetration into un-reinforced concrete targets with ogival nose projectiles [J]. International Journal Solids Structures, 1997, 34(12): 1479–1491. DOI: 10.1016/S0020-7683(96)00099-6. [6] LUNDGREN. A strain gage based projectile health monitor and salvage indicating circuit for kinetic energy penetrating projectiles [C] // 53th NDIA Fuze Conferenc. Florida: NDIA, 2009. [7] 刘小虎, 刘吉, 王乘, 等. 弹丸低速垂直侵彻无钢筋混凝土的实验研究 [J]. 爆炸与冲击, 1999, 19(4): 323–328.LIU X H, LIU J, WANG C, et al. Experimental studies on the projectile penetrating normally into a plain concrete [J]. Explosion and Shock Waves, 1999, 19(4): 323–328. [8] 杨明, 杨志刚, 林祖森. 加速度计输出信号的信息组成 [J]. 中北大学学报(自然科学版), 2000, 21(1): 44–46. DOI: 10.3969/j.issn.1673-3193.2000.01.012.YANG M, YANG Z G, LIN Z S. Information compositions of the output signal of accelerometers [J]. Journal of North China Institute of Technology (Natural Science Edtition), 2000, 21(1): 44–46. DOI: 10.3969/j.issn.1673-3193.2000.01.012. [9] ZHANG W, CHEN L, XIONG J, et al. Ultra-high g deceleration-time measurement for the penetration into steel target [J]. International Journal of Impact Engineering, 2007, 34(3): 436–447. DOI: 10.1016/j.ijimpeng.2006.01.008. [10] 徐鹏, 祖静, 范锦彪. 高速动能弹侵彻硬目标加速度测试技术研究 [J]. 振动与冲击, 2007, 26(11): 118–122. DOI: 10.3969/j.issn.1000-3835.2007.11.028.XU P, ZU J, FAN J B. Study on acceleration test technique of high velocity kinetic energy projectile penetrating into hard target [J]. Journal of Vibration and Shock, 2007, 26(11): 118–122. DOI: 10.3969/j.issn.1000-3835.2007.11.028. [11] 何丽灵, 高进忠, 陈小伟, 等. 弹体高过载硬回收测量技术的实验探讨 [J]. 爆炸与冲击, 2013, 33(6): 608–612. DOI: 10.11883/1001-1455(2013)06-0608-0612.HE L L, GAO J Z, CHEN X W, et al. Experimental study on measurement technology for projectile deceleration [J]. Explosion and Shock Waves, 2013, 33(6): 608–612. DOI: 10.11883/1001-1455(2013)06-0608-0612. [12] 周宁, 任辉启, 沈兆武, 等. 侵彻钢筋混凝土过程中弹丸过载特性的实验研究 [J]. 实验力学, 2006, 21(5): 572–578. DOI: 10.3969/j.issn.1001-4888.2006.05.005.ZHOU N, REN Q H, SHEN Z W, et al. Experimental study on overload characteristics of projectile penetrating reinforced concrete [J]. Journal of Experimental Mechanics, 2006, 21(5): 572–578. DOI: 10.3969/j.issn.1001-4888.2006.05.005. [13] 黄家蓉, 刘瑞朝, 何翔, 等. 侵彻过载测试信号的数据处理方法 [J]. 爆炸与冲击, 2009, 29(5): 555–560. DOI: 10.11883/1001-1455(2009)05-0555-0560.HUANG J R, LIU R C, HE X, et al. A new data processing technique for measured penetration overloads [J]. Explosion and Shock Waves, 2009, 29(5): 555–560. DOI: 10.11883/1001-1455(2009)05-0555-0560. [14] 赵生伟, 初哲, 李明. 抗侵彻过载战斗部装药安定性实验研究 [J]. 兵工学报, 2010, 31(S1): 284–287.ZHAO S W, CHU Z, LI M. Experiment investigation on stability of explosive in anti-overload warhead [J]. Acta Armamentarii, 2010, 31(S1): 284–287. [15] 张会锁, 罗旭, 张远高. 弹体过载记录仪安装方式对侵彻过载峰值的影响分析 [J]. 中北大学学报(自然科学版), 2014, 35(3): 252–257. DOI: 10.3969/j.issn.1673-3193.2014.03.006.ZHANG H S, LUO X, ZHANG Y G. Research on the influence of the missile overload recorder installation style on penetration acceleration peak value [J]. Journal of North University of China (Natural Science Edition), 2014, 35(3): 252–257. DOI: 10.3969/j.issn.1673-3193.2014.03.006. [16] 李计林, 徐文峥, 王晶禹, 等. 侵彻过程中弹载火工品过载特性数值模拟 [J]. 火工品, 2009(6): 30–34. DOI: 10.3969/j.issn.1003-1480.2009.06.010.LI J L, XU W J, WANG J Y, et al. The numerical simulation for overload characteristic of initiating explosive device on missile during penetration [J]. Initiators and Pyrotechnics, 2009(6): 30–34. DOI: 10.3969/j.issn.1003-1480.2009.06.010. [17] HALDAR A, HAMIEH H A. Local effect of solid missiles on concrete structures [J]. Journal of Structural Engineering, 1984, 110(5): 948–960. DOI: 10.1061/(ASCE)0733-9445(1984)110:5(948). [18] 徐建波. 长杆射弹对混凝土的侵彻特性研究[D]. 湖南: 国防科学技术大学, 2001: 23−56. [19] 杨超, 赵宝荣, 付克勤, 等. 缩比件弹体侵彻混凝土过程相似律研究 [J]. 兵器材料科学与工程, 2003(5): 3–7. DOI: 10.3969/j.issn.1004-244X.2003.05.001.YANG C, ZHAO B R, FU K Q, et al. Research on similarity law of penetration concrete of equiscale projectile [J]. Ordnance Material Science and Engineering, 2003(5): 3–7. DOI: 10.3969/j.issn.1004-244X.2003.05.001. [20] 武海军, 黄风雷, 陈利, 等. 动能弹侵彻钢筋混凝土相似性分析 [J]. 兵工学报, 2007, 28(3): 276–280. DOI: 10.3321/j.issn:1000-1093.2007.03.005.WU H J, HUANG F L, CHEN L, et al. Similarity law analyses of penetration behavior in reinforced concrete [J]. Acta Armamentarii, 2007, 28(3): 276–280. DOI: 10.3321/j.issn:1000-1093.2007.03.005. [21] 陈小伟, 张方举, 杨世全, 等. 动能深侵彻弹的力学设计(III): 缩比实验分析 [J]. 爆炸与冲击, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-0114.CHEN X W, ZHANG F J, YANG S Q, et al. Mechanics of structural design of epw (Ⅲ): investigations on the reduced-scale tests [J]. Explosion And Shock Waves, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-0114. [22] MEBAR Y. A method for scaling ballistic penetration phenomena [J]. International Journal of Impact Engineering, 1997, 19(9): 821–829. DOI: 10.1016/S0734-743X(97)00020-1. [23] YOUNG C W. Equations for predicting earth penetration by projectiles: an update: SAND88-0013 [R]. USA: Sandia National Laboratories, 1988. [24] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/S0734-743X(02)00037-4. [25] 朱彤. 结构动力模型相似问题及结构动力试验技术研究[D]. 大连: 大连理工大学, 2004. [26] MAI Y W, ATKINS A G. Crack propagation in non-proportionally scaled elastic structures [J]. International Journal of Mechanical Sciences, 1978, 20(7): 437–449. DOI: 10.1016/0020-7403(78)90033-4. [27] FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets [J]. International. Journal. Solids Structure, 1997, 34(31-32): 4127–4146. DOI: 10.1016/S0020-7683(97)00017-6. [28] MA Z F, DUAN Z P, OU Z C, et al. The experimental and theoretical research on attitude of projectile obliquely penetrating into thin concrete target [J]. Acta Armamentarii, 2015, 36(S1): 248–252. DOI: 10.15918/j.tbit1001-0645.2016.10.003. [29] 王冰. 大长径比弹体侵彻混凝土的数值模拟研究[D]. 北京: 北京理工大学, 2012: 5−30. [30] PENG Y, WU H, FANG Q, et al. Residual velocities of projectiles after normally perforating the thin ultra-high performance steel fiber reinforced concrete slabs [J]. International Journal of Impact Engineering, 2016, 97(11): 1–9. DOI: 10.1016/j.ijimpeng.2016.06.006. 期刊类型引用(20)
1. 缪广红,孙志皓,胡昱,马秋月,刘自伟,马宏昊,沈兆武. 铝中间层对TA2/5083爆炸焊接影响的数值模拟. 兵器装备工程学报. 2024(01): 201-207 . 百度学术
2. 缪广红,马秋月,胡昱,周大鹏,孙志皓,刘自伟,马宏昊,沈兆武. 铝/不锈钢双金属管爆炸焊接数值模拟. 兵器装备工程学报. 2024(02): 238-245 . 百度学术
3. 缪广红,孙志皓,周大鹏,胡昱,马秋月,刘自伟,马宏昊,沈兆武. 316L不锈钢/CK22碳钢爆炸焊接管的数值模拟. 兵器装备工程学报. 2024(03): 217-223 . 百度学术
4. 缪广红,朱志强,周大鹏,刘自伟,陈龙,张旭,楚翔宇. 基于不同算法的Ti/SS316爆炸焊接数值模拟研究. 精密成形工程. 2024(04): 53-60 . 百度学术
5. 缪广红,马秋月,周大鹏,胡昱,孙志皓,刘自伟,马宏昊,沈兆武. TA2/1060铝双金属管爆炸焊接数值模拟. 安徽理工大学学报(自然科学版). 2024(02): 75-86 . 百度学术
6. 缪广红,陈龙,周大鹏,刘自伟,朱志强,张旭,楚翔宇. 铝过渡层对钛/铝爆炸焊接影响的数值模拟. 精密成形工程. 2024(08): 85-90 . 百度学术
7. 缪广红,孙志皓,胡昱,马秋月,刘自伟,马宏昊,沈兆武. 焊接参数对不锈钢/铜爆炸焊接影响的数值模拟. 火工品. 2023(03): 61-66 . 百度学术
8. 赵宇,缪广红,孙志皓,马秋月,刘自伟. 镁/铝爆炸焊接的数值模拟. 安阳工学院学报. 2023(04): 43-48 . 百度学术
9. 缪广红,马秋月,胡昱,孙志皓,刘自伟,马宏昊,沈兆武. 钨铜双金属板热爆炸焊接数值模拟. 兵器装备工程学报. 2023(08): 257-265 . 百度学术
10. 缪广红,马秋月,周大鹏,胡昱,孙志皓,刘自伟,马宏昊,沈兆武. 间距对321钢/1230铝双金属管爆炸焊接影响的数值模拟. 力学季刊. 2023(04): 990-1000 . 百度学术
11. 荣凯. 负压环境下钢/不锈钢爆炸焊接参数设计. 煤矿爆破. 2022(02): 4-7+18 . 百度学术
12. 缪广红,祁俊翔,艾九英,胡昱. 基复板间隙对SUS304不锈钢/Q345R碳钢爆炸焊接影响的数值模拟研究. 黄河科技学院学报. 2022(08): 6-11 . 百度学术
13. 胡昱,缪广红,艾九英,祁俊翔,马秋月,孙志皓,马宏昊,沈兆武. TA2箔/Q235钢爆炸焊接数值模拟研究. 兵器装备工程学报. 2022(08): 296-303 . 百度学术
14. 缪广红,马雷鸣,李雪交,艾九英,赵文慧,马宏昊,沈兆武. 装药方式对铜/钢爆炸焊接界面波的影响及波形成机理. 高压物理学报. 2020(02): 126-134 . 百度学术
15. 缪广红,马雷鸣,吴建强,刘丰茂,陈烨开,马宏昊,沈兆武. 基复板间距对爆炸焊接质量影响的数值模拟. 爆破. 2020(02): 106-114 . 百度学术
16. 缪广红,艾九英,马雷鸣,李雪交,马宏昊,沈兆武. 不锈钢/普碳钢双面爆炸复合的数值模拟. 焊接学报. 2020(08): 55-62+100 . 百度学术
17. 王丽,张树海,李启发,陈亚红. 不锈钢/钢复合管水压爆炸焊接制造的数值模拟. 材料科学与工艺. 2018(01): 69-74 . 百度学术
18. 汪亚飞,谢敬佩,王文焱,王爱琴,李洛利,马窦琴,黄亚博. 热处理工艺对碳钢/不锈钢双液铸造复合板界面显微组织的影响. 金属热处理. 2018(09): 166-170 . 百度学术
19. 吕世敬,谢敬佩,王爱琴,毛志平,刘帅洋,田捍卫. 铜铝复合材料研究进展. 特种铸造及有色合金. 2017(08): 844-849 . 百度学术
20. 沈兆武,马宏昊,李雪交,余勇,王飞,陈伟,任丽杰,程扬帆,缪广红. 炸药能量的和平利用(Ⅱ). 工程爆破. 2016(01): 30-37 . 百度学术
其他类型引用(7)
-