空孔与运动裂纹相互作用的动焦散线实验研究

杨仁树 肖成龙 丁晨曦 陈程 赵勇 郑昌达

杨仁树, 肖成龙, 丁晨曦, 陈程, 赵勇, 郑昌达. 空孔与运动裂纹相互作用的动焦散线实验研究[J]. 爆炸与冲击, 2020, 40(5): 052202. doi: 10.11883/bzycj-2019-0091
引用本文: 杨仁树, 肖成龙, 丁晨曦, 陈程, 赵勇, 郑昌达. 空孔与运动裂纹相互作用的动焦散线实验研究[J]. 爆炸与冲击, 2020, 40(5): 052202. doi: 10.11883/bzycj-2019-0091
YANG Renshu, XIAO Chenglong, DING Chenxi, CHEN Cheng, ZHAO Yong, ZHENG Changda. Experimental study on dynamic caustics of interaction between void and running crack[J]. Explosion And Shock Waves, 2020, 40(5): 052202. doi: 10.11883/bzycj-2019-0091
Citation: YANG Renshu, XIAO Chenglong, DING Chenxi, CHEN Cheng, ZHAO Yong, ZHENG Changda. Experimental study on dynamic caustics of interaction between void and running crack[J]. Explosion And Shock Waves, 2020, 40(5): 052202. doi: 10.11883/bzycj-2019-0091

空孔与运动裂纹相互作用的动焦散线实验研究

doi: 10.11883/bzycj-2019-0091
基金项目: 国家重点研发计划专项(2016YFC0600903);国家自然科学基金(51774287)
详细信息
    作者简介:

    杨仁树(1963- ),男,博士,教授,博士生导师,yrs@cumtb.edu.cn

    通讯作者:

    肖成龙(1994- ),男,博士研究生,xcl_cumtb@163.com

  • 中图分类号: O341; O346

Experimental study on dynamic caustics of interaction between void and running crack

  • 摘要: 为研究预制裂纹不同偏移距离时运动裂纹与空孔的相互作用规律,采用动态焦散线实验系统,将预制裂纹的偏移距离设定为唯一变量,对含空孔的有机玻璃(PMMA)试件进行冲击三点弯实验。研究表明,存在两个临界距离:(6 mm (2 R )、9 mm (3 R )),在该偏移距离下,裂纹扩展轨迹、动态断裂特性发生显著改变:(1) 预制裂纹偏移距离不大于3 mm时,裂纹贯穿空孔,发生二次起裂,且二次起裂的速度与应力强度因子显著大于一次起裂,无偏移时裂纹轨迹的分形维数为最小值;(2) 偏移距离增大至6 mm时,裂纹不再贯穿空孔,空孔对裂纹先吸引后排斥,裂纹速度与应力强度因子先减小后增大,裂纹轨迹的分形维数达到最大值;(3) 偏移距离大于6 mm时,空孔对裂纹的吸引作用逐渐减小,大于9 mm后,空孔对裂纹的吸引不再显著,裂纹起裂后即向落锤加载方向扩展直至贯穿试件。
  • 图  1  数字激光动态焦散线实验系统

    Figure  1.  The system of digital laser dynamic caustics

    图  2  试件模型示意

    Figure  2.  Sketch map of the specimen

    图  3  冲击加载装置

    Figure  3.  Impact loading system

    图  4  裂纹扩展轨迹

    Figure  4.  Crack propagation paths in different specimens

    图  5  动态焦散斑系列图像

    Figure  5.  Dynamic caustic spots of specimens

    图  6  裂纹扩展速度随时间变化

    Figure  6.  Change of crack growth speed with time

    图  7  裂纹应力强度因子随时间的变化曲线

    Figure  7.  Change of crack stress intensity factor with time

    图  8  裂纹轨迹二值图

    Figure  8.  Binary diagrams of the crack trajectories in different specimens

    图  9  裂纹轨迹的计盒维数拟合曲线

    Figure  9.  Box-counting dimension fitting curves of crack trajectories in different specimens

  • [1] KALTHOFF J F, WINKLER S, BEINERT J. The influence of dynamic effects in impact testing [J]. International Journal of Fracture, 1977, 13(4): 528–531.
    [2] RUBINSTEIN A A. Macrocrack-microdefect interaction [J]. Journal of Applied Mechanics, 1986, 53(3): 505–510. DOI: 10.1115/1.3171803.
    [3] 姚学锋, 熊春阳, 方竞. 含偏置裂纹三点弯曲梁的动态断裂行为研究 [J]. 力学学报, 1996, 28(6): 661–669. DOI: 10.3321/j.issn:0459-1879.1996.06.003.

    YAO X F, XIONG C Y, FANG J. Study of dynamic fracture behaviour on three-point-bend beam with off-center edge-crack [J]. Acta Mechanica Sinica, 1996, 28(6): 661–669. DOI: 10.3321/j.issn:0459-1879.1996.06.003.
    [4] 岳中文, 宋耀, 陈彪, 等. 冲击载荷下层状岩体动态断裂行为的模拟试验研究 [J]. 振动与冲击, 2017, 36(12): 223–229.

    YUE Z W, SONG Y, CHEN B, et al. A study on the behaviors of dynamic fracture in layered rocks under impact loading [J]. Journal of Vibration and Shock, 2017, 36(12): 223–229.
    [5] 李清, 郭洋, 马万权, 等. 半圆盘构件冲击断裂特性的动态焦散线实验研究 [J]. 振动与冲击, 2016, 35(9): 52–58.

    LI Q, GUO Y, MA W Q, et al. Dynamic caustics tests for semi-circular specimen under impact loading [J]. Journal of Vibration and Shock, 2016, 35(9): 52–58.
    [6] 杨仁树, 丁晨曦, 杨立云, 等. 含缺陷结构的冲击断裂试验研究 [J]. 振动与冲击, 2016, 35(15): 103–108.

    YANG R S, DING C X, YANG L Y, et al. Tests for structures with flaws under impact loading [J]. Journal of Vibration and Shock, 2016, 35(15): 103–108.
    [7] 杨立云, 张勇进, 孙金超, 等. 偏置裂纹对含双裂纹PMMA试件动态断裂影响效应研究 [J]. 矿业科学学报, 2017(4): 28–33.

    YANG L Y, ZHANG Y J, SUN J C, et al. The effect of offset distance on dynamic fracture behavior of PMMA with double cracks [J]. Journal of Mining Science and Technology, 2017(4): 28–33.
    [8] 杨立云, 杨仁树, 许鹏. 新型数字激光动态焦散线实验系统及其应用 [J]. 中国矿业大学学报, 2013, 42(2): 188–194.

    YANG L Y, YANG R S, XU P. Caustic method combined with laser & digital high-speed camera and its application [J]. Journal of China University of Mining and Technology, 2013, 42(2): 188–194.
    [9] KALTHOFF J F, WINKLER S, BEINERT J. Dynamic stress intensity factors for arresting cracks in DCB specimens [J]. International Journal of Fracture, 1976, 12(2): 317–319. DOI: 10.1007/BF00036990.
    [10] 杨仁树, 王雁冰, 岳中文, 等. 定向断裂双孔爆破裂纹扩展的动态行为 [J]. 爆炸与冲击, 2013, 33(6): 631–637. DOI: 10.11883/1001-1455(2013)06-0631-07.

    YANG R S, WANG Y B, YUE Z W, et al. Dynamic behaviors of crack propagation in directional fracture blasting with two holes [J]. Explosion and Shock Waves, 2013, 33(6): 631–637. DOI: 10.11883/1001-1455(2013)06-0631-07.
    [11] 宋俊生, 王雁冰, 高祥涛, 等. 定向断裂控制爆破机理及应用 [J]. 矿业科学学报, 2016, 1(1): 16–28.

    SONG J S, WANG Y B, GAOL X T, et al. The mechanism of directional fracture controlled blasting and its application [J]. Journal of Mining Science and Technology, 2016, 1(1): 16–28.
    [12] LAGARDE A. Static and dynamic photoelasticity and caustics recent developments [M]// Static and Dynamic Photoelasticity and Caustics. Vienna: Springer, 1987.
    [13] 肖同社, 杨仁树, 庄金钊, 等. 节理岩体爆生裂纹扩展动态焦散线模型实验研究 [J]. 爆炸与冲击, 2007, 27(2): 159–164. DOI: 10.11883/1001-1455(2007)02-0159-06.

    XIAO T S, YANG R S, ZHUANG J Z, et al. Dynamic caustics model experiment of blasting crack developing on sandwich rock [J]. Explosion and Shock Waves, 2007, 27(2): 159–164. DOI: 10.11883/1001-1455(2007)02-0159-06.
    [14] ROSSMANITH H, DAEHNKE A, NASMILLNER R, et al. Fracture mechanics applications to drilling and blasting [J]. Fatigue and Fracture of Engineering Materials and Structures, 1997, 20(11): 1617–1636. DOI: 10.1111/j.1460-2695.1997.tb01515.x.
    [15] 杨仁树, 陈程, 赵勇, 等. 空孔-裂纹偏置方式对PMMA冲击断裂动态行为的影响 [J]. 振动与冲击, 2018, 37(20): 127–133.

    YANG R S, CHEN C, ZHAO Y, et al. Influence of the void-crack offset method on the dynamic behavior of PMMA during impact fracture [J]. Journal of Vibration and Shock, 2018, 37(20): 127–133.
    [16] MANDELBROT, BENOIT B. The fractal geometry of nature [J]. American Journal of Physics, 1983, 51(3): 286. DOI: 10.1119/1.13295.
    [17] 谢和平. 分形: 岩石力学导论[M]. 北京: 科学出版社, 1996.
    [18] 谢和平. 分形应用中的数学基础与方法[M]. 北京: 科学出版社, 1997.
    [19] JU Y, XI C, ZHANG Y, et al. Laboratory in situ CT observation of the evolution of 3D fracture networks in coal subjected to confining pressures and axial compressive loads: a novel approach [J]. Rock Mechanics and Rock Engineering, 2018, 51(11): 3361–3375. DOI: 10.1007/s00603-018-1459-4.
    [20] 杨军, 王树仁. 岩石爆破分形损伤模型研究 [J]. 爆炸与冲击, 1996, 16(1): 5–10.

    YANG J, WANG S R. Study on fractal damage model of rock fragmentation by blasting [J]. Explosion and Shock Waves, 1996, 16(1): 5–10.
    [21] 彭瑞东, 谢和平, 鞠杨. 二维数字图像分形维数的计算方法 [J]. 中国矿业大学学报, 2004(1): 22–27.

    PENG R D, XIE H P, JU Y. Computation method of fractal dimension for 2-D digital image [J]. Journal of China University of Mining and Technology, 2004(1): 22–27.
    [22] 周宏伟, 谢和平. 岩石节理张开度的分形描述 [J]. 水文地质工程地质, 1999(1): 3–6.

    ZHOU H W, XIE H P. The fractal description on the opening of a rock fracture [J]. Hydrogeology and Engineering Geology, 1999(1): 3–6.
  • 加载中
图(9)
计量
  • 文章访问数:  5650
  • HTML全文浏览量:  1568
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-26
  • 修回日期:  2019-07-12
  • 网络出版日期:  2020-03-25
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回