撞击载荷下充液双层结构响应特性的试验研究

张琳 张涛 刘土光 郑浩

张琳, 张涛, 刘土光, 郑浩. 撞击载荷下充液双层结构响应特性的试验研究[J]. 爆炸与冲击, 2020, 40(3): 033303. doi: 10.11883/bzycj-2019-0094
引用本文: 张琳, 张涛, 刘土光, 郑浩. 撞击载荷下充液双层结构响应特性的试验研究[J]. 爆炸与冲击, 2020, 40(3): 033303. doi: 10.11883/bzycj-2019-0094
ZHANG Lin, ZHANG Tao, LIU Tuguang, ZHENG Hao. Experimental study on response characteristics of the water-filled double-layer structure under collision load[J]. Explosion And Shock Waves, 2020, 40(3): 033303. doi: 10.11883/bzycj-2019-0094
Citation: ZHANG Lin, ZHANG Tao, LIU Tuguang, ZHENG Hao. Experimental study on response characteristics of the water-filled double-layer structure under collision load[J]. Explosion And Shock Waves, 2020, 40(3): 033303. doi: 10.11883/bzycj-2019-0094

撞击载荷下充液双层结构响应特性的试验研究

doi: 10.11883/bzycj-2019-0094
基金项目: 国家自然科学基金(10702022)
详细信息
    作者简介:

    张 琳(1993- ),男,硕士,zhanglin120121@163.com

    通讯作者:

    张 涛(1976- ),男,博士,副教授,zhangt7666@hust.edu.cn

  • 中图分类号: O342

Experimental study on response characteristics of the water-filled double-layer structure under collision load

  • 摘要: 为研究充液双层结构在碰撞过程的动力响应特性,对简化的双层板结构开展了系列碰撞试验,并对比了在有无充水条件下被撞结构的动态响应。研究结果显示,液体在碰撞过程中对顶板的缓冲和保护作用。最后通过分析有无充水条件下撞头加速度和内部扰动压力等试验数据,研究了充水与结构的流固耦合效应对碰撞响应的影响。
  • 图  1  碰撞试验的力学模型

    Figure  1.  Mechanical model of collision test

    图  2  试验结构模型(单位:mm)

    Figure  2.  Test structure model (unit: mm)

    图  3  拉伸试件外形及材料的应力应变曲线

    Figure  3.  Shape of tensile specimen and stress-strain curve

    图  4  试验结构与传感器安装位置

    Figure  4.  Test structure and sensor mounting position

    图  5  撞击过程中的5个典型时刻

    Figure  5.  Five typical moments during the collision

    图  6  顶板的最终变形形状

    Figure  6.  Final deformations of the upper plate

    图  7  不同碰撞速度下的撞头垂向加速度曲线

    Figure  7.  Vertical acceleration curves of the striker at various collision velocities

    图  8  撞头垂向加速度曲线的频谱图

    Figure  8.  Spectra of the vertical acceleration curves of the striker

    图  9  不同顶板厚度条件下撞头的垂向加速度曲线

    Figure  9.  Vertical acceleration evolutions of the striker under various upper plate’s thickness conditions

    图  10  扰动压力曲线

    Figure  10.  Evolutions of disturbance pressure

    图  11  底板位移时域曲线

    Figure  11.  Displcement history of the bottom plate

    图  12  底板动态位移

    Figure  12.  Dynamic displacement of the bottom plate

    表  1  材料的力学性能

    Table  1.   Mechanical properties of material

    杨氏模量/
    GPa
    泊松比密度/
    (kg∙m−3)
    屈服强度/
    MPa
    极限抗拉强度/
    MPa
    2060.37.86×103365.00484.37
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Test description

    工况描述碰撞速度/(m∙s−1)顶板厚度/mm充水状态
    n-3.44-8.45 8.453.44空筒
    w-3.44-8.45 8.453.44满水
    n-2.06-4.36 4.362.06空筒
    n-2.06-8.45 8.452.06空筒
    n-2.06-11.4711.472.06空筒
    w-2.06-4.36 4.362.06满水
    w-2.06-8.45 8.452.06满水
    w-2.06-11.4711.472.06满水
    下载: 导出CSV

    表  3  顶板最终变形统计

    Table  3.   Summary of final deformation of the upper plate

    工况描述顶板最终变形/mm顶板最终变形减小比例/%工况描述顶板最终变形/mm顶板最终变形减小比例/%
    n-3.44-8.4523.81n-2.06-8.4537.32
    w-3.44-8.4518.9520.41w-2.06-8.4525.3332.13
    n-2.06-4.3615.96n-2.06-11.4751.87
    w-2.06-4.3613.4215.91w-2.06-11.4731.1339.98
    下载: 导出CSV
  • [1] MINORSKY V U. An analysis of ship collisions with reference to protection of nuclear power plants [J]. Journal of Ship Research, 1958, 3(2): 2.
    [2] JONES N. On the collision protection of ships [J]. Nuclear Engineering and Design, 1976, 38(2): 229–240.
    [3] GEERS T, ZHANG P. Doubly asymptotic approximations for submerged structures with internal fluid volumes: evaluation [J]. Journal of Applied Mechanics, 1994, 61(4): 893–899. DOI: 10.1115/1.2901574.
    [4] KANG J M, LEE K J. Effect of design variables on the behavior of VLCC structure in collision [C] // Proceeding of the 13th MSC Users Conference. Japan, 1996: 12.
    [5] PEDERSEN P, ZHANG S. On impact mechanics in ship collisions [J]. Marine Structures, 1998, 11(10): 429–449. DOI: 10.1016/S0951-8339(99)00002-7.
    [6] IQBAL M, TIWARI G, GUPTA P, et al. Ballistic performance and energy absorption characteristics of thin aluminium plates [J]. International Journal of Impact Engineering, 2015, 77: 1–15. DOI: 10.1016/j.ijimpeng.2014.10.011.
    [7] LIU B, VILLAVICENCIO R, SOARES C. Simplified analytical method to evaluate tanker side panels during minor collision incidents [J]. International Journal of Impact Engineering, 2015, 78: 20–33. DOI: 10.1016/j.ijimpeng.2014.11.021.
    [8] GRIMSMO E, CLAUSEN A, AALBERG A, et al. Fillet welds subjected to impact loading: an experimental study [J]. International Journal of Impact Engineering, 2017, 108: 101–113. DOI: 10.1016/j.ijimpeng.2017.02.023.
    [9] ZHU L, SHI S, JONES N. Dynamic response of stiffened plates under repeated impacts [J]. International Journal of Impact Engineering, 2018, 117: 113–122. DOI: 10.1016/j.ijimpeng.2018.03.006.
    [10] 刘峰, 王自力, 崔维成. 高能搁浅下双层底结构的损伤特性研究 [J]. 船舶力学, 2005, 9(6): 85–92. DOI: 10.3969/j.issn.1007-7294.2005.06.009.

    LIU F, WANG Z L, CUI W C. Research on damage characteristics of double bottom structure in ship hard grounding [J]. Journal of Ship Mechanics, 2005, 9(6): 85–92. DOI: 10.3969/j.issn.1007-7294.2005.06.009.
    [11] 朱锡, 黄玉盈, 张振华, 等. 水面舰艇舷侧防雷舱结构水下抗爆防护机理研究 [J]. 船舶力学, 2006, 10(1): 113–119. DOI: 10.3969/j.issn.1007-7294.2006.01.015.

    ZHU X, HUANG Y Y, ZHANG Z H, et al. Theoretical research on the dependence of cabin near shipboard of surface warship subjected to underwater contact explosion [J]. Journal of Ship Mechanics, 2006, 10(1): 113–119. DOI: 10.3969/j.issn.1007-7294.2006.01.015.
    [12] 张婧, 施兴华, 王善. 舰船舷侧防护结构在水下接触爆炸荷载下的破坏分析 [J]. 爆破, 2007, 24(3): 7–10. DOI: 10.3963/j.issn.1001-487X.2007.03.002.

    ZHANG J, SHI X H, WANG S. Destruction analysis of ship broadside defensive structure subjected to underwater contact explosions [J]. Blasting, 2007, 24(3): 7–10. DOI: 10.3963/j.issn.1001-487X.2007.03.002.
    [13] 肖巍, 张阿漫, 汪玉. 具有内域的双层加筋圆柱壳动响应特性 [J]. 力学学报, 2014, 46(1): 120–127. DOI: 10.6052/0459-1879-13-196.

    XIAO W, ZHANG A, WANG Y. Dynamic response of double ring-stiffened cylindrical shell with internal fluid [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 120–127. DOI: 10.6052/0459-1879-13-196.
    [14] IAKOVLEV S, FUREY C, PYKE D, et al. Shock response of a system of two submerged co-axial cylindrical shells coupled by the inter-shell fluid [J]. Journal of Fluids and Structures, 2015, 55: 1–24.
    [15] LIU G, LIU J, WANG J, et al. A numerical method for double-plated structure completely filled with water subjected to underwater explosion [J]. Marine Structures, 2017, 53: 164–180. DOI: 10.1016/j.marstruc.2017.02.004.
    [16] BAILEY S, BALDINI N, BARKLEY E, et al. Annual book of ASTM standards: metals-mechanical testing; elevated and low temperature tests; metallography [S]. Panama: ASTM International, 2003.
    [17] HILL R. Studies in large plastic flow and fracture [M]. New York: McGraw-Hill, 1952: 362−365.
    [18] HOLT M. Underwater explosions [J]. Annual Review of Fluid Mechanics, 1977, 9(1): 187–214. DOI: 10.1146/annurev.fl.09.010177.001155.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  5055
  • HTML全文浏览量:  1620
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 修回日期:  2019-07-03
  • 网络出版日期:  2020-02-25
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回