Pressure-bearing and fracture behaviors of metal diaphragms in a small double-pulse engine
-
摘要: 为了得到双脉冲发动机隔舱处金属膜片的适宜结构,本文中采用Johnson-Cook材料损伤模型对不同规格金属膜片的承压、破裂过程进行了数值模拟,确定某种规格金属膜片满足设计要求。针对符合要求的金属膜片结构,设计了一套测双向测压装置,对金属膜片的承压、破裂过程依次进行试验。验证了所采用的金属膜片在一脉冲工作时其结构完整没有发生破裂,在二脉冲工作时金属膜片沿着预制刻痕破裂且没有金属碎片脱离,承压和破裂均能满足发动机正常工作要求。通过数值模拟和实验进行对比,发现得到的结果接近,说明采用本文的数值模拟方法研究金属膜片承压与破裂是可行的。通过数值模拟发现,在相同金属膜片厚径比时,随着金属膜片直径的增大,破裂时所需的压强先增大后减小再增大。
-
关键词:
- 双脉冲发动机 /
- 金属膜片 /
- Johnson-Cook损伤模型 /
- 破裂规律
Abstract: In order to obtain the suitable structure of the metal diaphragm in the double-pulse engine compartment, this study used the Johnson-Cook material damage model to numerically simulate the pressure-bearing and rupture process of metal diaphragms of different specifications. The results determined the metal diaphragm of a certain specification to meet the design requirements. A set of two-way pressure measuring device was designed to study the pressure-bearing and rupture behaviors of the metal diaphragm. The results show that the metal diaphragm has no structural rupture during one-pulse operation. During the two-pulse operation, the metal diaphragm breaks along the pre-cut and no metal fragments are detached. The pressure-bearing and rupture behavior can meet the working requirements in the engine. The results obtained by numerical simulation are in good agreement with the experiment data, which shows that it is feasible to use the numerical simulation method to study the bearing and cracking of metal diaphragm. Furthermore, simulation study shows that as the diameter increases with the thickness-diameter ratio of the metal diaphragm kept constant, the pressure required for the rupture increases at first and then decreases, and then it increases again.-
Key words:
- double-pulse engine /
- metal diaphragm /
- Johnson-Cook damage model /
- law of rupture
-
表 1 金属膜片和支撑架的参数
Table 1. Parameters of metal diaphragm and support frame
部位 材料 密度/(kg·m−3) 弹性模量/GPa 泊松比 抗拉强度/MPa 断裂应变 金属膜片 2A12铝合金 2 770 71.7 0.33 405 0.080 支撑架 30CrMnSiA 7 850 196.0 0.30 1 080 0.057 表 2 金属膜片尺寸
Table 2. Metal diaphragm size
规格 膜片直径/
mm膜片厚度/
mm十字刻痕
深度/mm十字刻痕处的
有效厚度/mm四个圆弧刻痕
深度/mm圆弧处有效
厚度/mm刻痕截面的
角度/(°)A 28 1.5 1.0 0.5 0.7 0.8 60 B 28 1.0 0.5 0.5 0.2 0.8 60 C 28 0.8 0.4 0.4 0.2 0.6 60 D 28 0.7 0.5 0.2 0.3 0.4 60 表 3 金属膜片结构的完整性
Table 3. Structural integrity of the metal diaphragm
规格 承压状态 破裂状态 A 有效,基本无形变 没破裂 B 有效,基本无形变 没破裂 C 有效,形变较小 破裂,但破裂程度不够 D 有效,形变较小 破裂,打开的程度满足要求 表 4 金属膜片参数
Table 4. Metal diaphragm parameters
规格 膜片直径/
mm膜片厚度/
mm十字刻痕
深度/mm十字刻痕处的
有效厚度/mm四个圆弧刻痕
深度/mm圆弧处有效
厚度/mm刻痕截面的
角度/(°)圆弧刻痕距膜片
中心的距离/mm出现裂纹时
的压强/MPaD1 36 0.9 0.65 0.25 0.39 0.51 60 16.20 5.5 D2 44 1.1 0.75 0.35 0.47 0.63 60 19.58 6.8 D3 52 1.3 0.93 0.37 0.55 0.75 60 23.14 8.0 D4 60 1.5 1.07 0.43 0.64 0.86 60 26.70 9.4 D5 76 1.9 1.36 0.54 0.82 1.08 60 33.82 6.5 D6 92 2.3 1.64 0.66 1.00 1.30 60 40.95 7.5 D7 108 2.7 1.93 0.77 1.16 1.54 60 48.06 8.4 D8 124 3.1 2.21 0.89 1.33 1.77 60 55.18 9.4 D9 160 4.0 2.86 1.14 1.72 2.28 60 71.20 11.2 -
[1] 王春光, 刘洪超, 杨德敏. 脉冲发动机隔离装置发展现状研究 [J]. 航空兵器, 2012(5): 48–51; 60. DOI: 10.3969/j.issn.1673-5048.2012.05.011.WANG C G, LIU H C, YANG D M. Research on the development of separation device in pulse soild rocket motor [J]. Aero Weaponry, 2012(5): 48–51; 60. DOI: 10.3969/j.issn.1673-5048.2012.05.011. [2] 毕世龙, 陈延辉. 多脉冲发动机研究 [J]. 飞航导弹, 2011(9): 88–92. [3] 孙超, 张琳, 严聪, 等. 双脉冲固体火箭发动机概况 [J]. 飞航导弹, 2013(8): 72–77. DOI: 10.16338/j.issn.1009-1319.2013.08.013. [4] 陈子豪. 小型隔舱式双脉冲固体火箭发动机内流场数值研究[D]. 南京: 南京理工大学, 2017. [5] NISHII S, FUKUDA K, KUBOTA N. Combustion tests of two-stage pulse rocket motors: AIAA-89-2426 [C] // 25th Joint Propulsion Conference. Monterey, CA, USA: AIAA, 1989. [6] 陈国胜, 沈亚鹏, 陶甫贤. 陶瓷盖板结构的应力分析 [J]. 固体火箭技术, 1994(2): 55–65.CHEN G S, SHEN Y P, TAO F X. The stress analysis of ceramic coverplate [J]. Journal of Solid Rocket Technology, 1994(2): 55–65. [7] SCHILLING S, TROUILLOT P, WEIGAND A. On the development and testing of a 120 mm caliber double pulse motor (DPM) [C] // Proceedings of 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, Florida: AIAA, 2004. DOI: 10.2514/6.2004-3387. [8] NAUMANN K, STADLER L, TROUILLOT P, et al. Double-pulse solid rocket technology at bayern-chemie/protac [C] // Proceedings of 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento, California: AIAA, 2006. DOI: 10.2514/6.2006-4761. [9] 王伟, 李江, 王春光, 等. 隔舱式双脉冲发动机金属膜片设计与实验研究 [J]. 推进技术, 2013, 34(8): 1115–1120. DOI: 10.13675/j.cnki.tjjs.2013.08.018.WANG W, LI J, WANG C G, et al. Study on metal diaphragm of pulse separation device in dual-pulse solid rocket motor [J]. Journal of Propulsion Technology, 2013, 34(8): 1115–1120. DOI: 10.13675/j.cnki.tjjs.2013.08.018. [10] 季玉辉. 基于Johnson-Cook模型的硬物损伤数值模拟研究[D]. 南京: 南京航空航天大学, 2009. [11] 刘伟凯, 惠博. 双脉冲发动机中金属膜片式隔舱设计方法 [J]. 固体火箭技术, 2013, 36(4): 486–490; 495. DOI: 10.7673/j.issn.1006-2793.2013.04.011.LIU W K, HUI B. Research on designing method of metal diaphragm PSD in double pulse solid rocket motor [J]. Journal of Solid Rocket Technology, 2013, 36(4): 486–490; 495. DOI: 10.7673/j.issn.1006-2793.2013.04.011. [12] 吴大方, 宋昊, 高镇同, 等. 铝合金2A12在热冲击条件下的力学性能 [J]. 北京航空航天大学学报, 2007, 33(5): 531–534. DOI: 10.3969/j.issn.1001-5965.2007.05.007.WU D F, SONG H, GAO Z T, et al. Mechanical properties of 2A12 Al alloy at transient heating [J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5): 531–534. DOI: 10.3969/j.issn.1001-5965.2007.05.007. [13] 石瑞, 王长辉, 苌艳楠. 双脉冲固体发动机铝膜隔板设计和试验研究 [J]. 固体火箭技术, 2013, 36(2): 190–194. DOI: 10.7673/j.issn.1006-2793.2013.02.010.SHI R, WANG C H, CHANG Y N. Design and experimental study on aluminum clapboard of dual-pulse solid motor [J]. Journal of Solid Rocket Technology, 2013, 36(2): 190–194. DOI: 10.7673/j.issn.1006-2793.2013.02.010. [14] 杜平安. 有限元网格划分的基本原则 [J]. 机械设计与制造, 2000(1): 34–36. DOI: 10.3969/j.issn.1001-3997.2000.01.016. [15] 张伟, 魏刚, 肖新科. 2A12铝合金本构关系和失效模型 [J]. 兵工学报, 2013, 34(3): 276–282. DOI: 10.3969/j.issn.1000-1093.2013.03.004.ZHANG W, WEI G, XIAO X K. Constitutive relation and fracture criterion of 2A12 aluminum alloy [J]. Acta Armamentarii, 2013, 34(3): 276–282. DOI: 10.3969/j.issn.1000-1093.2013.03.004. [16] 米双山, 张锡恩, 陶贵明. 钨球侵彻LY-12铝合金靶板的有限元分析 [J]. 爆炸与冲击, 2005, 25(5): 477–480. DOI: 10.11883/1001-1455(2005)05-0477-04.MI S S, ZHANG X E, TAO G M. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target [J]. Explosion and Shock Waves, 2005, 25(5): 477–480. DOI: 10.11883/1001-1455(2005)05-0477-04. [17] 夏开文, 刘文彦, 唐志平. 30CrMnSiA 钢高温动态力学性质的实验研究 [J]. 爆炸与冲击, 1998, 18(4): 310–316.XIA K W, LIU W Y, TANG Z P. Experimental study of dynamic properties of 30CrMnSiA steel at high temperature [J]. Explosion and Shock Waves, 1998, 18(4): 310–316. [18] 王春光, 任全彬, 田维平, 等. 脉冲发动机中金属膜片式隔舱动态破坏过程研究 [J]. 固体火箭技术, 2013, 36(1): 22–26. DOI: 10.7673/j.issn.1006-2793.2013.01.005.WANG C G, REN Q B, TIAN W P, et al. Research on the process of dynamic failure of metal diaphragm pulse separation device in pulse motor [J]. Journal of Solid Rocket Technology, 2013, 36(1): 22–26. DOI: 10.7673/j.issn.1006-2793.2013.01.005. [19] 李尧, 胡敏, 董松, 等. 基于ABAQUS的30CrMnSiA合金钢切削仿真研究 [J]. 工具技术, 2016, 50(9): 35–37. DOI: 10.3969/j.issn.1000-7008.2016.09.012.LI Y, HU M, DONG S, et al. Study on milling simulation of 30 CrMnSiA alloy steel based on ABAQUS [J]. Tool Engineering, 2016, 50(9): 35–37. DOI: 10.3969/j.issn.1000-7008.2016.09.012.