Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target
-
摘要: 为探索钨合金柱形弹超高速撞击水泥砂浆靶的侵彻深度随撞击速度变化规律,利用二级轻气炮开展了
$\varnothing $ 3.45 mm×10.5 mm的克级93 W钨合金柱形弹以1.82~3.66 km/s的速度撞击水泥砂浆靶的实验,利用CT图像诊断技术获得了侵彻深度和残余弹长随撞击速度的变化规律,对超高速撞击过程进行了数值模拟,结合数值模拟结果进一步分析了超高速撞击物理过程。结果表明:(1)超高速撞击条件下成坑是弹坑+弹洞型;(2)侵深-速度曲线呈现先增大后减小的现象,在弹速2.6 km/s附近存在侵彻深度极大值,约为8.5倍弹长,相对于中低速侵彻的深度并没有显著优势。(3)通过基于数值模拟得到的弹靶界面压力时程曲线将侵彻过程分为4个阶段,其中准定常侵彻阶段和第三侵彻阶段是决定总侵深的主要阶段。(4)随撞击速度增加,弹体侵蚀逐渐剧烈,此时准定常侵彻阶段的侵深变化不大,而第三侵彻阶段中的刚体侵彻部分大幅降低,导致总侵深大幅降低,使总侵深曲线呈现先增大后减小的现象。Abstract: In this paper we carried out experiments using two-stage light gas gun with Gram-grade cylindrical tungsten alloy projectiles, impacting concrete targets at velocity from 1.82 km/s to 3.66 km/s ton investigate the cratering mechanism of concrete targets in hypervelocity impact conditions. We obtained the penetration depth and residual length of the projectiles using computerized tomography (CT) and used the numerical simulation results conducted by Euler algorithm to further examine the mechanism of hypervelocity impact, and achieved the following results: (1) The craters were structured by spalling areas and bullet holes; (2) The penetration depth increases at first and then decreases with the increase of the impact velocities, and the maximum penetration depth was 8.5 times that of the projectile length, which showed no significant advantage over low velocity penetration; (3) According to the pressure of the interface of the projectiles and targets, the penetration processes were divided into four stages, of which the quasi-steady stage and the third stage were crucial in determining the total penetration depth; (4) When the projectiles were completely eroded with the increase of the impact velocities, the penetration depth of the quasi-steady stages almost remained the same and the penetration depth of the third stage decreased so that the total penetration depth was observed to increase at first and then decrease. -
表 1 钨合金弹体超高速撞击水泥砂浆靶的成坑数据
Table 1. Cratering data of hypervelocity impact of tungsten alloy projectiles penetrating concrete target
编号 弹速/
(km·s−1)侵彻深度 /mm 弹丸余长/
mm弹丸余长误差/
mm编号 弹速/
(km·s−1)侵彻深度 /mm 弹丸余长/
mm弹丸余长误差/
mm1-1 1.82 67.0 − − 1-9 2.90 76.8 3.2 1.4 1-2 1.97 69.8 6.2 1.1 1-10 3.08 66.5 0 0 1-3 2.02 80.58 6.7 1.2 1-11 3.19 68.0 0 0 1-4 2.35 84.15 4.9 1.4 1-12 3.36 63.8 0 0 1-5 2.39 82.5 5.6 0.1 1-13 3.36 61.0 0 0 1-6 2.61 85.9 4.5 1.1 1-14 3.46 65.0 0 0 1-7 2.66 84.0 4.2 0.1 1-15 3.66 58.3 0 0 1-8 2.86 84.1 4.4 1.3 表 2 水泥砂浆的材料模型参数
Table 2. Material parameters of concrete
G0/GPa fc/MPa ft/fc fs/fc A B ρ/(kg·m−3) M D1 D2 εf,min N 16.7 42.7 0.1 0.18 1.4 1.4 2.2 0.5 0.04 1 0.01 0.5 表 3 不同初始速度条件下的弹体速度、成坑深度和弹体长度的数值模拟结果
Table 3. Simulated projectiles velocity, penetration depth and residual projectile length at different impact velocities
初始速度/
(m·s−1)准定常侵彻阶段结束时
弹体速度/(m·s−1)准定常侵彻阶段结束时
弹体余长/mm准定常侵彻阶段侵彻
深度/mm第三侵彻阶段侵彻
深度/mm总侵深/
mm1 700 1 050 6.5 28.0 38.5 66.5 2 000 1 101 5.5 30.7 42.3 73.0 2 300 1 201 4.5 32.3 46.2 78.5 2 650 1 243 3.5 35.2 44.8 80.0 3 000 1 277 0 34.9 42.6 77.5 3 300 1 325 0 38.5 35.0 73.5 3 460 1 374 0 36.1 33.0 69.1 4 000 1 394 0 40.5 22.0 62.5 -
王明洋, 邱艳宇, 李杰, 等. 超高速长杆弹对岩石侵彻, 地冲击效应理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(3): 564–572.WANG Mingyang, QIU Yanyu, LI Jie, et al. Theoretical and experimental study on penetration in rock and ground impact effects of long rod projectiles of hyper speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 564–572. 李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 60–66.LI Gan, SONG Chunming, QIU Yanyu, et al. Theoretical and experimental studies on the phenomenon of reduction in penetration depth of hyper-velocity projectiles into granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66. 牛雯霞, 黄洁, 柯发伟, 等. 混凝土房屋结构靶的超高速撞击特性研究 [J]. 实验流体力学, 2014, 28(2): 79–84. doi: 10.11729/syltlx2014pz38NIU Wenxia, HUANG Jie, KE Fawei, et al. Research on hypervelocity impact characteristics of concrete building structures target [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 79–84. doi: 10.11729/syltlx2014pz38 张浩, 张庆明. 铝弹丸超高速撞击混凝土介质冲击熔化研究 [C] // 北京力学会第20届学术年会论文集. 北京, 2014: 268−269. ANTOUN T H, GLENN L A, WALTON O R, et al. Simulation of hypervelocity penetration in limestone [J]. International Journal of Impact Engineering, 2006, 33: 45–52. doi: 10.1016/j.ijimpeng.2006.09.009 邓国强, 杨秀敏. 超高速武器对地打击效应数值仿真 [J]. 科技导报, 2015, 33(16): 65–71. doi: 10.3981/j.issn.1000-7857.2015.16.010DENG Guoqiang, YANG Xiumin. Numerical simulation of damage effect of hypervelocity weapon on ground target [J]. Science & Technology Review, 2015, 33(16): 65–71. doi: 10.3981/j.issn.1000-7857.2015.16.010 张德志, 唐润棣, 林俊德, 等. 新型气体驱动二级轻气炮研制 [J]. 兵工学报, 2004, 25(1): 14–17. doi: 10.3321/j.issn:1000-1093.2004.01.004ZHANG Dezhi, TANG Rundi, LIN Junde, et al. Development of a new type gas-driven two-stage light gas gun [J]. Acta Armamentarii, 2004, 25(1): 14–17. doi: 10.3321/j.issn:1000-1093.2004.01.004 王可慧. 高速弹体侵彻混凝土靶研究 [D]. 北京: 北京理工大学, 2011. 钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [J]. 北京理工大学学报, 2018, 38(10): 26–31.QIAN Bingwen, ZHOU Gang, LI Jin, et al. Study of the crater produced by hypervelocity tungsten alloy projectile into concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 26–31. STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high strain rate [J]. Journal of Applied Mechanics, 1989, 65(4): 1528–1533. HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C] // Proceedings of the 14th International Symposium on Ballistics. Quebec, Canada, 1993: 591−600. RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA2B2500 numerical analysis using a new macroscopic concrete model for hydrocodes [C] // 9th International Symposium, Interaction of the Effects of Munitions with Structures. Berlin-Strausberg: IBMAC, 1999: 315−322. 钱秉文. 钨合金弹体超高速撞击混凝土靶实验研究和机理探索 [D]. 北京: 清华大学, 2016. EICHELBERGER R J. Experimental test of the theory of penetration by metallic jets [J]. Journal of Applied Physics, 1956, 27(1): 63–68. doi: 10.1063/1.1722198 ORPHAL D L. Phase three penetration [J]. International Journal of Impact Engineering, 1997, 20(6): 601–616.