结构爆破振动响应的频率与持续时间依赖性分析

刘义佳 卢文波 陈明 严鹏

刘义佳, 卢文波, 陈明, 严鹏. 结构爆破振动响应的频率与持续时间依赖性分析[J]. 爆炸与冲击, 2019, 39(8): 085203. doi: 10.11883/bzycj-2019-0142
引用本文: 刘义佳, 卢文波, 陈明, 严鹏. 结构爆破振动响应的频率与持续时间依赖性分析[J]. 爆炸与冲击, 2019, 39(8): 085203. doi: 10.11883/bzycj-2019-0142
LIU Yijia, LU Wenbo, CHEN Ming, YAN Peng. Frequency and duration dependence analysis of structural blasting vibration response[J]. Explosion And Shock Waves, 2019, 39(8): 085203. doi: 10.11883/bzycj-2019-0142
Citation: LIU Yijia, LU Wenbo, CHEN Ming, YAN Peng. Frequency and duration dependence analysis of structural blasting vibration response[J]. Explosion And Shock Waves, 2019, 39(8): 085203. doi: 10.11883/bzycj-2019-0142

结构爆破振动响应的频率与持续时间依赖性分析

doi: 10.11883/bzycj-2019-0142
基金项目: 国家自然科学基金(51779190)
详细信息
    作者简介:

    刘义佳(1996- ),男,硕士研究生,liuyijia@whu.edu.cn

    通讯作者:

    卢文波(1968- ),男,博士,教授,博导,wblu@whu.edu.cn

  • 中图分类号: O389

Frequency and duration dependence analysis of structural blasting vibration response

  • 摘要: 明确结构爆破振动响应对频率与持续时间的依赖性有助于进行爆破参数设计和爆破振动安全评价。本文从频域上推导单段爆破振动、多段爆破振动、单自由度系统振动响应三者之间的关系,以延迟时间和爆破段数作为纽带分析爆破振动频率和持续时间对结构爆破振动响应的影响,最后以一组实测试验数据进行验证。结果表明,在延迟时间∆τ下,多段爆破振动出现间隔1/∆τ的频带现象,频率成分向优势频率fi=n/∆τ集中(n $\in$ Z +),且随段数增加,优势频率幅值增大。爆破振动中接近结构自振频率fn的优势频率成分使结构产生较大振动响应,为此延迟时间的选择应保证在n/∆τ优势频率处不会引起结构的共振。多段爆破振动在其多个优势频率n/∆τ附近的结构振动响应放大系数均比单段大,其余处与单段相差不大,特别的,当优势频率fi、单段爆破振动主频fm和结构物自振频率fn三者相近时,结构可能产生最大的响应。爆破段数的增加,使爆破振动持续时间增加,但仅在一定范围内使结构爆破振动响应增加,增加到一定值后,结构响应与持续时间关系不大。
  • 图  1  单自由度系统的振动响应示意图

    Figure  1.  Schematic diagram of response of single degree of freedom system under blasting vibration excitation

    图  2  典型多段爆破振动速度时程曲线

    Figure  2.  Typical multi-delay blast vibration velocity time-histories

    图  3  单段和多段爆破振动的频谱对比

    Figure  3.  The spectral comparison of single delay and multi-delay blasting vibration

    图  4  单自由度系统的单段和多段爆破振动速度响应谱对比

    Figure  4.  Velocity response spectrum of single degree of freedom system under single delay and multi-delay blasting vibration

    图  5  段数对爆破振动频谱的影响

    Figure  5.  Effect of the number of delays on the blasting vibration spectrum

    图  6  段数对爆破振动反应谱的影响

    Figure  6.  Effect of the number of delays on the response spectrum of blasting vibration

    图  7  延迟时间对反应谱比值(10段比单段)的影响

    Figure  7.  Effect of delay time on the ratio of response spectrum (10 delays to single delay)

    图  8  段数对反应谱峰值比值(多段比单段)的影响

    Figure  8.  Effect of the number of delays on the ratio of peaks of response spectrum (multi-delay to single delay)

    图  9  光面爆破设计及测点布置示意图

    Figure  9.  Schematic diagram of smooth blasting design and measuring point layout

    图  10  实测爆破振动速度时程曲线

    Figure  10.  Blast vibration velocity time-histories

    图  11  各单段归一化的爆破振动速度时程

    Figure  11.  Normalized blasting vibration velocity time history for each delay

    图  12  单段与多段爆破振动的频谱、反应谱对比

    Figure  12.  Comparison of spectrum, response spectrum between single delay and multi-delay

    图  13  段数对反应谱峰值比值(多段比单段)的影响

    Figure  13.  Effect of the number of delays on the ratios of peaks of response spectra (multi-delay to single delay)

    表  1  单自由度系统的爆破振动速度响应特征值

    Table  1.   Characteristic values of blasting vibration velocity response of single degree of freedom system

    自振频率/Hz振动响应优势频率/Hz振动响应峰值/(cm∙s−1)
    单段多段单段多段
    15.030.016.6/24.9/33.02.722.94
    25.028.824.9/33.04.115.72
    下载: 导出CSV

    表  2  光面爆破参数

    Table  2.   Parameters of smooth blasting

    钻孔类型孔径/mm孔深/mm药卷直径/mm孔距/m单孔药量/kg最大单响药量/kg堵塞长度/m
    光爆孔761032/700.62.213.21.0
    下载: 导出CSV
  • [1] LU W B, LUO Y, CHEN M, et al. An introduction to Chinese safety regulations for blasting vibration [J]. Environmental Earth Sciences, 2012, 67(7): 1951–1959. DOI: 10.1007/s12665-012-1636-9.
    [2] SINGH P K, ROY M P. Damage to surface structures due to blast vibration [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(6): 949–961. DOI: 10.1016/j.ijrmms.2010.06.010.
    [3] 罗忆, 卢文波, 陈明, 等. 爆破振动安全判据研究综述 [J]. 爆破, 2010, 27(1): 14–22. DOI: 10.3963/j.issn.1001-487X.2010.01.004.

    LUO Yi, LU Wenbo, CHEN Ming, et al. View of research on safety criterion of blasting vibration [J]. Blasting, 2010, 27(1): 14–22. DOI: 10.3963/j.issn.1001-487X.2010.01.004.
    [4] KARADOGAN A, KAHRIMAN A, OZER U. A new damage criteria norm for blast-induced ground vibrations in Turkey [J]. Arabian Journal of Geosciences, 2014, 7(4): 1617–1626. DOI: 10.1007/s12517-013-0830-8.
    [5] ALDAS G G U. Explosive charge mass and peak particle velocity (PPV)-frequency relation in mining blast [J]. Journal of Geophysics & Engineering, 2010, 7(3): 223. DOI: 10.1088/1742-2132/7/3/001.
    [6] RAI R, SHRIVASTVA B K, SINGH T N. Prediction of maximum safe charge per delay in surface mining [J]. Mining Technology, 2005, 114(4): 227–231. DOI: 10.1179/037178405x84832.
    [7] 爆破安全规程: GB6722-2014 [S]. 北京: 中国标准出版社, 2014.
    [8] YANG J H, LU W B, JIANG Q H, et al. Frequency comparison of blast-induced vibration per delay for the full-face millisecond delay blasting in underground opening excavation [J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2016, 51: 189–201. DOI: 10.1016/j.tust.2015.10.036.
    [9] BLAIR D P. The measurement, modelling and control of ground vibrations due to blasting [C] // Proceedings of the 2nd International Symposium on Rock Fragmentation by Blasting. Keystonse. Colorado, USA, 1987: 88−101.
    [10] BLAIR D P. Limitations of electronic delays for the control of blast vibration and fragmentation [C] // Proceedings of the 9th International Symposium on Rock Fragmentation by Blasting. Granada, Spain, 2009: 171−184.
    [11] RICHARDS A B, MOORE A J. Factors affecting frequency control of blast vibration [C] // WANG X. New Development on Engineering Blasting. Beijing, China: Metallurgical Industry Press, 2017: 305−310.
    [12] QIU X, SHI X, GOU Y, et al. Short-delay blasting with single free surface: results of experimental tests [J]. Tunnelling & Underground Space Technology, 2018, 74: 119–130. DOI: 10.1016/j.tust.2018.01.014.
    [13] 凌同华, 李夕兵. 多段微差爆破振动信号频带能量分布特征的小波包分析 [J]. 岩石力学与工程学报, 2005, 24(7): 1117–1122. DOI: 10.3321/j.issn:1000-6915.2005.07.005.

    LING Tonghua, LI Xibing. Analysis of energy distributions of millisecond blast vibration signals using the wavelet packet method [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(7): 1117–1122. DOI: 10.3321/j.issn:1000-6915.2005.07.005.
    [14] 赵明生, 张建华, 易长平. 基于单段波形叠加的爆破振动信号时频分析 [J]. 煤炭学报, 2010, 35(8): 1279–1282.

    ZHAO Mingsheng, ZHANG Jianhua, YI Changping. Time-frequency analysis based on single-stage addition of waveforms of blasting vibration signals [J]. Journal of China Coal Science, 2010, 35(8): 1279–1282.
    [15] 凌同华, 李夕兵, 王桂尧. 单段爆破震动的动态响应分析 [J]. 中南大学学报(自然科学版), 2007, 38(3): 551–554. DOI: 10.3969/j.issn.1672-7207.2007.03.032.

    LING Tonghua, LI Xibing, WANG Guiyao. Dynamic response analysis of single-interval-time in millisecond blast vibration [J]. Journal of Central South University (Science and Technology), 2007, 38(3): 551–554. DOI: 10.3969/j.issn.1672-7207.2007.03.032.
    [16] 陈士海, 魏海霞. 爆破地震波频率对多自由度弹性体系动力响应的影响分析 [J]. 振动与冲击, 2009, 28(11): 150–154.

    CHEN Shihai, WEI Haixia. Effect analysis of blasting seismic wave frequency on dynamic response of a multi-degrees of freedom elastic system [J]. Journal of Vibration and Shock, 2009, 28(11): 150–154.
    [17] 魏海霞. 爆破地震波作用下建筑结构的动力响应及安全判据研究 [D]. 济南: 山东科技大学, 2010: 56−78.
    [18] 李夕兵, 凌同华. 单段与多段微差爆破地震的反应谱特征分析 [J]. 岩石力学与工程学报, 2005, 24(14): 2409–2413. DOI: 10.3321/j.issn:1000-6915.2005.14.002.

    LI Xibing, LING Tonghua. Response spectrum analysis of ground vibration induced by single deck and multi-deck blasting [J]. Journal of Rock Mechanics and Engineering, 2005, 24(14): 2409–2413. DOI: 10.3321/j.issn:1000-6915.2005.14.002.
    [19] 李夕兵, 凌同华. 爆炸参量对爆破地震反应谱的影响 [J]. 爆炸与冲击, 2004, 24(5): 443–447. doi: 10.3321/j.issn:1001-1455.2004.05.011

    LI Xibing, LING Tonghua. Influence of explosion parameters on response spectrum for blast ground vibration [J]. Explosion and Shock Waves, 2004, 24(5): 443–447. doi: 10.3321/j.issn:1001-1455.2004.05.011
    [20] DOWDING C H. Construction vibrations [M]. 2 ed. New Jersey: Prentice Hall Inc, 2000: 64−65.
    [21] ANIL K C. 结构动力学: 理论及其在地震工程中的应用 [M]. 4版. 谢礼立, 吕大刚, 译. 北京: 高等教育出版社, 2016: 36−37.
    [22] 姚端正, 梁家宝. 数学物理方法 [M]. 3版. 北京: 科学出版社, 2010: 168−169.
    [23] SISKIND D E, STAGG M S, KOPP J W, et al. Structure response and damage produced by ground vibration from surface mine blasting: report of investigation RI850-7 [R]. USA: Bureau of Mines, 1980.
    [24] 李洪涛, 舒大强, 卢文波, 等. 建筑物对爆破振动中不同频率能量成分的响应特征 [J]. 振动与冲击, 2010, 29(2): 154–158. DOI: 10.3969/j.issn.1000-3835.2010.02.035.

    LI Hongtao, SHU Daqiang, LU Wenbo, et al. Response characteristics of a structure to different frequency components in blasting vibration energy [J]. Journal of Vibration and Shock, 2010, 29(2): 154–158. DOI: 10.3969/j.issn.1000-3835.2010.02.035.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  5795
  • HTML全文浏览量:  1612
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-22
  • 修回日期:  2019-05-28
  • 网络出版日期:  2019-07-25
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回