柱形汇聚几何中内爆驱动金属界面不稳定性

王涛 汪兵 林健宇 钟敏 柏劲松 李平 陶钢

王涛, 汪兵, 林健宇, 钟敏, 柏劲松, 李平, 陶钢. 柱形汇聚几何中内爆驱动金属界面不稳定性[J]. 爆炸与冲击, 2020, 40(5): 052201. doi: 10.11883/bzycj-2019-0150
引用本文: 王涛, 汪兵, 林健宇, 钟敏, 柏劲松, 李平, 陶钢. 柱形汇聚几何中内爆驱动金属界面不稳定性[J]. 爆炸与冲击, 2020, 40(5): 052201. doi: 10.11883/bzycj-2019-0150
WANG Tao, WANG Bing, LIN Jianyu, ZHONG Min, BAI Jingsong, LI Ping, TAO Gang. Numerical investigations of the interface instabilities of metallic material under implosion in cylindrical convergent geometry[J]. Explosion And Shock Waves, 2020, 40(5): 052201. doi: 10.11883/bzycj-2019-0150
Citation: WANG Tao, WANG Bing, LIN Jianyu, ZHONG Min, BAI Jingsong, LI Ping, TAO Gang. Numerical investigations of the interface instabilities of metallic material under implosion in cylindrical convergent geometry[J]. Explosion And Shock Waves, 2020, 40(5): 052201. doi: 10.11883/bzycj-2019-0150

柱形汇聚几何中内爆驱动金属界面不稳定性

doi: 10.11883/bzycj-2019-0150
基金项目: 国家自然科学基金(11702272,11532012,11932018);科学挑战专题(TZ2016001)
详细信息
    作者简介:

    王 涛(1979- ),男,硕士,副研究员,wtao_mg@163.com

    通讯作者:

    柏劲松(1968- ),男,博士,研究员,bjsong@foxmail.com

  • 中图分类号: O347.5

Numerical investigations of the interface instabilities of metallic material under implosion in cylindrical convergent geometry

  • 摘要: 采用自研的高保真度爆轰与冲击动力学程序,对柱形汇聚几何中内爆驱动金属材料界面不稳定性的动力学行为,进行了数值模拟研究。结果表明,首次冲击后至约12 μs,界面发展以RM(Richtmyer-Meshkov)不稳定性为主;12 μs后至冲击波聚心反弹加载前,界面聚心运动处于加速减速状态,界面发展由RT (Rayleigh-Taylor)不稳定性主导;冲击波聚心反弹加载后,界面发展又由RM不稳定性主导。另外,还研究了初始条件(初始振幅、初始波长、钢壳初始厚度和几何构型)对柱形内爆驱动金属材料界面不稳定性的影响。结果显示:初始振幅较大时振幅增长也较大;初始波长较小(模数较大)时振幅增长较小,而且存在一个截止波长;钢壳厚度会抑制扰动增长,也存在一个截止厚度;几何汇聚效应会使扰动增长速度更快。
  • 图  1  爆轰驱动铝实验的扰动振幅

    Figure  1.  Perturbation amplitudes of experiments driven by explosion

    图  2  柱面内爆驱动金属材料界面不稳定性计算模型

    Figure  2.  Computational model of metal interface instability driven by cylindrical implosion

    图  3  密度显示的一维波谱图

    Figure  3.  One dimensional wave diagram displayed by density

    图  4  不锈钢壳内外界面加载压力

    Figure  4.  Loading pressures on inner and outer interface

    图  5  不锈钢壳内界面运动速度

    Figure  5.  Velocity of inner interface

    图  6  不锈钢壳内界面加速度

    Figure  6.  Acceleration of inner interface

    图  7  网格收敛性分析

    Figure  7.  Grid convergence

    图  8  密度场

    Figure  8.  Images of density fields

    图  9  钢壳内界面的扰动

    Figure  9.  Inner perturbed interface of steel shell

    图  10  双模态扰动演化的谱分析

    Figure  10.  Spectral analysis of dual mode perturbation evolution

    图  11  双模态扰动的振幅增长曲线

    Figure  11.  Amplitude growth curves of dual mode perturbation

    图  12  不同初始扰动振幅时的振幅增长曲线

    Figure  12.  Amplitude growth curves for different initial perturbation amplitude

    图  13  不同初始扰动模数时的振幅增长曲线

    Figure  13.  Amplitude growth curves for different initial perturbation mode number

    图  14  不同钢壳初始厚度时的振幅增长曲线

    Figure  14.  Amplitude growth curves for different initial thickness of steel shell

    图  15  不同几何构型下的振幅增长曲线

    Figure  15.  Amplitude growth curves for different geometrical configuration

    图  16  不同几何构型下的界面运动速度

    Figure  16.  Interface velocities for different geometrical configuration

    图  17  平面几何中的界面加速度

    Figure  17.  Accelerations of interface in planar geometry

  • [1] RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319. DOI: 10.1002/cpa.3160130207.
    [2] MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4: 101–104.
    [3] RAYLEIGH L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density [J]. Proceedings London Mathematical Society, 1883, 14(1): 170–177.
    [4] TAYLOR G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their plane [J]. Proceedings of the Royal Society of London, Series A, 1950, 201: 192–196.
    [5] MCCRORY R L, MONTIERTH L, MORSE R L, et al. Nonlinear evolution of ablation-driven Rayleigh-Taylor instability [J]. Physical Review Letters, 1981, 46(5): 336–339. DOI: 10.1103/PhysRevLett.46.336.
    [6] LINDL J D, MEAD W C. Two-dimensional simulation of fluid instability in laser-fusion pellets [J]. Physical Review Letters, 1975, 34(20): 1273–1276. DOI: 10.1103/PhysRevLett.34.1273.
    [7] KIFONIDIS K, PLEWA T, SCHECK L, et al. Non-spherical core collapse supernovae. Ⅱ. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987A [J]. Astronomy and Astrophysics, 2006, 453: 661–678.
    [8] LOW M M M, ZAHNLE K. Explosion of comet shoemaker-levy 9 on entry into the jovian atmosphere [J]. The Astrophysical Journal, 1994, 434: L33–L36. DOI: 10.1086/187565.
    [9] SHUVALOV V V, ARTEMIEVA N A. Numerical modeling of tunguska-like impacts [J]. Planetary and Space Science, 2002, 50: 181–192. DOI: 10.1016/S0032-0633(01)00079-4.
    [10] KAUS B J P, PODLADCHIKOV Y Y. Forward and reverse modeling of the three-dimensional viscous Rayleigh-Taylor instability [J]. Geophysical Research Letters, 2001, 28(6): 1095–1098. DOI: 10.1029/2000GL011789.
    [11] MOLNAR P, HOUSEMAN G A, CONRAD C P. Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer [J]. Geophysical Journal International, 1998, 133(3): 568–584. DOI: 10.1046/j.1365-246X.1998.00510.x.
    [12] WANG T, BAI J S, LI P, et al. The numerical study of shock-induced hydrodynamic instability and mixing [J]. Chinese Physics B, 2009, 18(3): 1127–1135. DOI: 10.1088/1674-1056/18/3/048.
    [13] WANG T, BAI J S, LI P, et al. Large-eddy simulations of the Richtmyer-Meshkov instability of rectangular interface accelerated by shock waves [J]. Science China: Physics, Mechanics and Astronomy, 2010, 53(5): 905–914.
    [14] WANG T, LIU J H, BAI J S, et al. Experimental and numerical investigation of inclined air/SF6 interface instability under shock wave [J]. Applied Mathematics and Mechanics, 2012, 33(1): 37–50. DOI: 10.1007/s10483-012-1532-x.
    [15] WANG T, TAO G, BAI J S, et al. Numerical comparative analysis of Richtmyer-Meshkov instability simulated by different SGS models [J]. Canadian Journal of Physics, 2015, 93(5): 519–525. DOI: 10.1139/cjp-2014-0099.
    [16] WANG T, LI P, BAI J S, et al. Large-eddy simulation of the Richtmyer-Meshkov instability [J]. Canadian Journal of Physics, 2015, 93(10): 1124–1130. DOI: 10.1139/cjp-2014-0652.
    [17] WANG T, BAI J S, LI P, et al. Large-eddy simulations of the multi-mode Richtmyer-Meshkov instability and turbulent mixing under reshock [J]. High Energy Density Physics, 2016, 19(1): 65–75.
    [18] WANG T, TAO G, BAI J S, et al. Dynamical behavior of the Richtmyer-Meshkov instability-induced turbulent mixing under multiple shock interactions [J]. Canadian Journal of Physics, 2017, 95(8): 671–681. DOI: 10.1139/cjp-2016-0633.
    [19] BAI J S, LIU J H, WANG T, et al. Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows [J]. Physical Review E, 2010, 81(2): 056302.
    [20] BAI J S, ZOU L Y, WANG T, et al. Experimental and numerical study of the shock-accelerated elliptic heavy gas cylinders [J]. Physical Review E, 2010, 82(5): 056318. DOI: 10.1103/PhysRevE.82.056318.
    [21] BAI J S, WANG B, WANG T, et al. Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock [J]. Physical Review E, 2012, 86(6): 066319. DOI: 10.1103/PhysRevE.86.066319.
    [22] XIAO J X, BAI J S, WANG T. Numerical study of initial perturbation effects on Richtmyer-Meshkov instability in nonuniform flows [J]. Physical Review E, 2016, 94(1): 013112. DOI: 10.1103/PhysRevE.94.013112.
    [23] LIU H, XIAO Z L. Scale-to-scale energy transfer in mixing flow induced by the Richtmyer-Meshkov instability [J]. Physical Review E, 2016, 93(5): 053112. DOI: 10.1103/PhysRevE.93.053112.
    [24] 李俊涛, 孙宇涛, 潘建华, 等. 冲击加载下V形界面的失稳与湍流混合 [J]. 物理学报, 2016, 65(24): 245202. DOI: 10.7498/aps.65.245202.

    LI J T, SUN Y T, PAN J H, et al. Instability and turbulent mixing of shocked V-shaped interface [J]. Acta Physica Sinica, 2016, 65(24): 245202. DOI: 10.7498/aps.65.245202.
    [25] 李俊涛, 孙宇涛, 胡晓棉, 等. 激波冲击V形界面重气体导致的壁面与旋涡作用及其对湍流混合的影响 [J]. 物理学报, 2017, 66(23): 235201. DOI: 10.7498/aps.66.235201.

    LI J T, SUN Y T, HU X M, et al. Effect of vortex/wall interaction on turbulent mixing in the Richtmyer-Meshkov instability induced by shocked V shape interface [J]. Acta Physica Sinica, 2017, 66(23): 235201. DOI: 10.7498/aps.66.235201.
    [26] LUO X S, DING J C, WANG M H, et al. A semi-annular shock tube for studying cylindrically converging Richtmyer-Meshkov instability [J]. Physics of Fluids, 2015, 27(9): 091702. DOI: 10.1063/1.4931929.
    [27] LUO X S, ZHANG F, DING J C, et al. Long-term effect of Rayleigh-Taylor stabilization on converging Richtmyer-Meshkov instability [J]. Journal of Fluid Mechanics, 2018, 849: 231–244. DOI: 10.1017/jfm.2018.424.
    [28] SI T, LONG T, ZHAI Z G, et al. Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder [J]. Journal of Fluid Mechanics, 2015, 784: 225–251. DOI: 10.1017/jfm.2015.581.
    [29] DING J C, SI T, YANG J M, et al. Measurement of a Richtmyer-Meshkov instability at an air-SF6 interface in a semiannular shock tube [J]. Physical Review Letters, 2017, 119(1): 014501. DOI: 10.1103/PhysRevLett.119.014501.
    [30] LEI F, DING J C, SI T, et al. Experimental study on a sinusoidal air/SF6 interface accelerated by a cylindrically converging shock [J]. Journal of Fluid Mechanics, 2017, 826: 819–829. DOI: 10.1017/jfm.2017.506.
    [31] MILE J W. Taylor instability of a flat plate, General atomic division of general dynamics: GAMD-7335 [R]. 1966.
    [32] WHITE G N. One-degree-of-freedom model for the Taylor instability of an ideally plastic metal plate: LA-5225-MS [R]. Los Alamos, NM: Los Alamos National Laboratory, 1973.
    [33] ROBINSON A C, SWEGLE J W. Acceleration instability in elastic-plastic solids. II. Analytical techniques [J]. Journal of Applied Physics, 1989, 66(7): 2859–2872. DOI: 10.1063/1.344191.
    [34] PIRIZ A R, CELA J J L, CORTÁZAR O D, et al. Rayleigh-Taylor instability in elastic solids [J]. Physical Review E, 2005, 72(5): 056313. DOI: 10.1103/PhysRevE.72.056313.
    [35] PIRIZ A R, CELA J J L, TAHIR N A. Rayleigh-Taylor instability in elastic-plastic solids [J]. Journal of Applied Physics, 2009, 105(11): 116101. DOI: 10.1063/1.3139267.
    [36] PIRIZ A R, CELA J J L, TAHIR N A. Linear analysis of incompressible Rayleigh-Taylor instability in solids [J]. Physical Review E, 2009, 80(4): 046305. DOI: 10.1103/PhysRevE.80.046305.
    [37] BAI X B, WANG T, ZHU Y X, et al. Expansion of linear analysis of Rayleigh-Taylor interface instability of metal materials [J]. World Journal of Mechanics, 2018, 8: 94–106. DOI: 10.4236/wjm.2018.84008.
    [38] BARNES J F, BLEWETT P J, MCQUEEN R G, et al. Taylor instability in solids [J]. Journal of Applied Physics, 1974, 45(2): 727–732. DOI: 10.1063/1.1663310.
    [39] BARNES J F, JANNEY D H, LONDON R K, et al. Further experimentation on Taylor instability in solids [J]. Journal of Applied Physics, 1980, 51: 4678–4679. DOI: 10.1063/1.328339.
    [40] LINDQUIST M J, CAVALLO R M, LORENZ K T, et al. Aluminum Rayleigh Taylor strength measurements and calculations [C] // LEGRAND M, VANDENBOOMGAERDE M. 10th International Workshop on Physics of Compressible Turbulent Mixing. Paris, France, 2006.
    [41] DE FRAHAN M T H, BELOF J L, CAVALLO R M, et al. Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability [J]. Journal of Applied Physics, 2015, 117(22): 225901. DOI: 10.1063/1.4922336.
    [42] 王涛, 柏劲松, 曹仁义, 等. 爆轰驱动铝飞层扰动增长的数值模拟 [J]. 高压物理学报, 2018, 32(3): 032301. DOI: 10.11858/gywlxb.20170624.

    WANG T, BAI J S, CAO R Y, et al. Numerical investigations of perturbation growth in aluminum flyer driven by explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032301. DOI: 10.11858/gywlxb.20170624.
    [43] 何长江, 周海兵, 杭义洪. 爆轰驱动金属铝界面不稳定性的数值分析 [J]. 中国科学: 物理学, 力学, 天文学, 2009, 39(9): 1170–1173.

    HE C J, ZHOU H B, HANG Y H. Numerical analysis of aluminum interface instability under explosion [J]. Science China: Physics, Mechanics and Astronomy, 2009, 39(9): 1170–1173.
    [44] 郝鹏程, 冯其京, 胡晓棉. 内爆加载金属界面不稳定性的数值分析 [J]. 爆炸与冲击, 2016, 36(6): 739–744. DOI: 10.11883/1001-1455(2016)06-0739-06.

    HAO P C, FENG Q J, HU X M. A numerical study of the instability of the metal shell in the implosion [J]. Explosion and Shock Waves, 2016, 36(6): 739–744. DOI: 10.11883/1001-1455(2016)06-0739-06.
    [45] 刘军, 冯其京, 周海兵. 柱面内爆驱动金属界面不稳定性的数值模拟研究 [J]. 物理学报, 2014, 63(15): 155201. DOI: 10.7498/aps.63.155201.

    LIU J, FENG Q J, ZHOU H B. Simulation study of interface instability in metals driven by cylindrical implosion [J]. Acta Physica Sinica, 2014, 63(15): 155201. DOI: 10.7498/aps.63.155201.
    [46] OLSON R T, CERRETA E K, MORRIS C, et al. The effect of microstructure on Rayleigh-Taylor instability growth in solids [J]. Journal of Physics: Conference Series, 2014, 500: 112048. DOI: 10.1088/1742-6596/500/11/112048.
    [47] JENSEN B J, CHERNE F J, PRIME M B, et al. Jet formation in cerium metal to examine material strength [J]. Journal of Applied Physics, 2015, 118(19): 195903. DOI: 10.1063/1.4935879.
    [48] CHERNE F J, HAMMERBERG J E, ANDREWS M J, et al. On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum [J]. Journal of Applied Physics, 2015, 118(18): 185901. DOI: 10.1063/1.4934645.
    [49] PARK H S, LORENZ K T, CACALLO R M, et al. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate [J]. Physical Review Letters, 2010, 104(13): 135504. DOI: 10.1103/PhysRevLett.104.135504.
    [50] PIRIZ A R, LÓPEZ CELA J J, TAHIR N A. Richtmyer-Meshkov instability as a tool for evaluating material strength under extreme conditions [J]. Nuclear Instruments and Methods in Physics Research A, 2009, 606: 139–141. DOI: 10.1016/j.nima.2009.03.094.
    [51] DIMONTE G, TERRONES G, CHERNE F J, et al. Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities [J]. Physical Review Letters, 2011, 107(26): 264502. DOI: 10.1103/PhysRevLett.107.264502.
    [52] LORENZ K T, EDWARDS M J, GLENDINNING S G, et al. Accessing ultrahigh-pressure, quasi-isentropic states of matter [J]. Physics of Plasmas, 2005, 12(5): 056309. DOI: 10.1063/1.1873812.
    [53] PRIME M B, BUTTLER W T, BUECHLER M A, et al. Estimation of metal strength at very high rates using free-surface Richtmyer-Meshkov instabilities [J]. Journal of Dynamic Behavior of Materials, 2017, 3: 1–14. DOI: 10.1007/s40870-016-0088-9.
    [54] LEBEDEV A I, APRELKOV O N, ARINI V A, et al. Perturbation method for study of shear strength of materials at pressures up to ~300 GPa [C] // AIP Conference Proceedings (Shock Compression of Condensed Matter), 2006: 745−748.
    [55] FRACHET V, GELEZNIKOFF F, GUIX R, et al. Rayleigh Taylor instability in cylindrical configuration [C] // Proceedings of 2nd International Workshop on the Physics of Compressible Turbulent Mixing. 1989: 862−849.
  • 加载中
图(17)
计量
  • 文章访问数:  5683
  • HTML全文浏览量:  2037
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 修回日期:  2019-07-21
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回