Dynamic responses of AP1000 reinforced concrete shield building subjected to contact explosion
-
摘要: 屏蔽厂房是AP1000核岛厂房的第一层外部防线,确保屏蔽厂房在服役期间遭受爆炸冲击荷载作用下的安全性和完整性,十分重要。本文中,采用欧拉-拉格朗日算法(coupled Euler-Lagrange, CEL),对炸药在屏蔽厂房20种不同起爆部位作用下的动态破坏特征进行了研究,以结构贯穿破坏的损伤质量作为损伤程度的判别依据,着重探讨在不同起爆位置作用下结构的压力和损伤演化特性。研究表明:在接触爆炸荷载作用下,厂房在起爆点附近发生局部破坏;在相同高度下,环向不同角度起爆所引起的损伤程度差异较小,不同高度起爆的损伤程度差异较大。通过压力和损伤的演化分析,确定了屏蔽厂房最不利抗爆部位,对厂房不同部位的配筋策略提出建议。结论可为制定屏蔽厂房在爆炸冲击荷载作用下的安全防护措施提供参考依据。Abstract: The reinforced concrete (RC) shield building is the first external defense layer of AP1000 structure. Therefore, the safety and integrity must be ensured during the plant life in any conditions such as the blast loading. In this study, the coupled Euler-Lagrange (CEL) method was used to numerically simulate the fluid and structure interaction (FSI) between air and AP1000 RC shield building. The dynamic response analysis of the 20 contact explosion positions of the shield building under explosive loads were carried out, and the damage mass was used to evaluate the damage. The evolution mechanism of pressure and damage mode were discussed. The numerical results clearly show that, under the contact explosive loads, the RC shield building has the local damage near the explosive point. The damage degree at the same height but with different circumferential angle are similar, while those in the same circumferential angle with different height are different. In addition, through analyzing the pressure and damage evolution, the strategy of the different parts of the plant reinforcement was proposed. These results might be helpful to understand the behaviors and characteristics of the AP1000 RC shield building under contact explosion and provide valuable references in design and engineering practice.
-
表 1 不同网格尺寸下核岛厂房的自振频率
Table 1. Frequency of nuclear island under different element sizes
网格尺寸/mm 频率/Hz 一阶 二阶 三阶 300 3.316 9 3.326 5 5.141 0 500 3.366 6 3.377 1 5.191 8 800 3.372 0 3.382 4 5.184 8 表 2 爆炸位置和工况
Table 2. Locations of explosion and working conditions
爆炸位置 工况 爆炸位置 工况 爆炸位置 工况 爆炸位置 工况 爆炸位置 工况 Ⅰ-1 1 Ⅱ-1 5 Ⅲ-1 9 Ⅳ-1 13 Ⅴ-1 17 Ⅰ-2 2 Ⅱ-2 6 Ⅲ-2 10 Ⅳ-2 14 Ⅴ-2 18 Ⅰ-3 3 Ⅱ-3 7 Ⅲ-3 11 Ⅳ-3 15 Ⅴ-3 19 Ⅰ-4 4 Ⅱ-4 8 Ⅲ-4 12 Ⅳ-4 16 Ⅴ-4 20 -
[1] 林诚格. 非能动安全先进核电厂AP1000 [M]. 北京: 原子能出版社, 2008: 16−17. [2] ROGERS G L, DIMAGGIO F L. Dynamics of framed structures [M]. New York: John Wiley and Sons Incs, 1959: 100-120. DOI: 10.1115/1.3643926. [3] BAKER W E. Explosions in air [M]. Texas: University of Texas Press, 1973. [4] KARPP R R, DUFFEY T A, NEAL T R. Response of containment vessels to explosive blast loading [J]. Journal of Pressure Vessel Technology, 1983, 105(1): 23–27. DOI: 10.1115/1.3264234. [5] HASHEMI S K, BRADFORD M A, VALIPOUR H R. Dynamic response of cable-stayed bridge under blast load [J]. Engineering Structures, 2016, 127: 719–736. DOI: 10.1016/j.engstruct.2016.08.038. [6] TANG E K C, HAO H. Numerical simulation of a cable-stayed bridge response to blast loads. Part I: model development and response calculations [J]. Engineering Structures, 2010, 32(10): 3180–3192. DOI: 10.1016/j.engstruct.2010.06.007. [7] KELLIHER D, SUTTON-SWABY K. Stochastic representation of blast load damage in a reinforced concrete building [J]. Structural Safety, 2012, 34(1): 407–417. DOI: 10.1016/j.strusafe.2011.08.001. [8] FENG F. Dynamic response and robustness of tall buildings under blast loading [J]. Journal of Constructional Steel Research, 2013, 80: 299–307. DOI: 10.1016/j.jcsr.2012.10.001. [9] CHEN J Y, LIU X P, XU Q. Numerical simulation analysis of damage mode of concrete gravity dam under close-in explosion [J]. KSCE Journal of Civil Engineering, 2017, 21(1): 397–407. DOI: 10.1007/s12205-016-1082-4. [10] ZHANG S R, WANG G H, WANG C, et al. Numerical simulation of failure modes of concrete gravity dams subjected to underwater explosion [J]. Engineering Failure Analysis, 2014, 36: 49–64. DOI: 10.1016/j.engfailanal.2013.10.001. [11] 王天运, 任辉启, 刘立胜. 常规装药爆炸荷载作用下核电站安全壳的动力响应分析 [J]. 工程建设与设计, 2005(4): 20–23. DOI: 10.3969/j.issn.1007-9467.2005.04.007.WANG T Y, REN H Q, LIU L S. Nuclear power station concrete containment dynamical response analysis under blast load of general bomb [J]. Construction and Design for Project, 2005(4): 20–23. DOI: 10.3969/j.issn.1007-9467.2005.04.007. [12] PANDEY A K, KUMAR R, PAUL D K, et al. Non-linear response of reinforced concrete containment structure under blast loading [J]. Nuclear Engineering and Design, 2006, 236(9): 993–1002. DOI: 10.1016/j.nucengdes.2005.09.015. [13] BAO X L, LI B. Residual strength of blast damaged reinforced concrete columns [J]. International Journal of Impact Engineering, 2010, 37(3): 295–308. DOI: 10.1016/j.ijimpeng.2009.04.003. [14] CAO X Y, XU Q, CHEN J Y, et al. Damage prediction for an AP1000 nuclear island subjected to a contact explosion [J]. Structural Engineering International, 2018, 28(4): 526–534. DOI: 10.1080/10168664.2018.1462673. [15] 赵春风, 陈健云. 内爆荷载作用下钢筋混凝土安全壳的非线性响应分析 [J]. 爆炸与冲击, 2013, 33(6): 667–672. DOI: 10.11883/1001-1455(2013)06-0667-06.ZHAO C F, CHEN J Y. Dynamic responses of reinforced concrete containment subjected to internal blast loading [J]. Explosion and Shock Waves, 2013, 33(6): 667–672. DOI: 10.11883/1001-1455(2013)06-0667-06. [16] MALVAR L J, ROSS C A. Review of strain rate effects for concrete in tension [J]. ACI Materials Journal, 1998, 95: 735–739. [17] BATRA R C, KIM C H. Analysis of shear banding in twelve materials [J]. International Journal of Plasticity, 1992, 8(4): 425–452. DOI: 10.1016/0749-6419(92)90058-K. [18] KALTHOFF J F, WINKLER S. Failure mode transition at high rates of shear loading [C] // DGM Informations Gesellschaft mbH. Impact loading and dynamic behavior of materials. 1988: 185−195. [19] KALTHOFF J F, BÜRGEL A. Influence of loading rate on shear fracture toughness for failure mode transition [J]. International Journal of Impact Engineering, 2004, 30(8-9): 957–971. DOI: 10.1016/j.ijimpeng.2004.05.004. [20] NEEDLEMAN A, TVERGAARD V. Analysis of a brittle-ductile transition under dynamic shear loading [J]. International Journal of Solids and Structures, 1995, 32(17): 2571–2590. DOI: 10.1016/0020-7683(94)00283-3. [21] RAVI-CHANDAR K. On the failure mode transitions in polycarbonate under dynamic mixed-mode loading [J]. International Journal of Solids and Structures, 1995, 32(6): 925–938. DOI: 10.1016/0020-7683(94)00169-w. [22] Center Dynamics Inc. Autodyn theory manual [M]. Concord, CA: Century Dynamics Inc, 2006. [23] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C] // Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin-Strausberg, Germany, 1999: 315. [24] HULATT J, HOLLAWAY L, THORNE A. Preliminary investigations on the environmental effects on new heavyweight fabrics for use in civil engineering [J]. Composites Part B: Engineering, 2002, 33(6): 407–414. DOI: 10.1016/S1359-8368(02)00034-3. [25] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strain rates and high temperatures [C] // The 7th International Symposium on Ballistics. Hague, Netherlands, 1983: 541−547. [26] VAN DER VEEN W A. Simulation of a compartmented airbag deployment using an explicit, coupled Euler/Lagrange method with adaptive Euler domains [R]. Florida: NAFEMS, 2003. [27] BENSON D J. Computational methods in Lagrangian and Eulerian hydrocodes [J]. Computer methods in Applied Mechanics and Engineering, 1992, 99(2): 235–394. DOI: 10.1016/0045-7825(92)90042-I. [28] LI J, WU C Q, HAO H, et al. Experimental investigation of ultra-high performance concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2016, 93: 62–75. DOI: 10.1016/j.ijimpeng.2016.02.007. [29] LI J, WU C Q, HAO H. Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion [J]. Engineering Structures, 2015, 102: 395–408. DOI: 10.1016/j.engstruct.2015.08.032. [30] LI J, WU C Q, HAO H, et al. Experimental and numerical study on steel wire mesh reinforced concrete slab under contact explosion [J]. Materials and Design, 2017, 116: 77–91. DOI: 10.1016/j.matdes.2016.11.098. [31] WANG W, ZHANG D, LU F Y, et al. Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion [J]. Engineering Failure Analysis, 2013, 27: 41–51. DOI: 10.1016/j.engfailanal.2012.07.010. [32] 李本平. 制导炸弹连续打击下混凝土重力坝的破坏效应 [J]. 爆炸与冲击, 2010, 30(2): 220–224. DOI: 10.11883/1001-1455(2010)02-0220-05.LI B P. Damage effect of a concrete gravity dam under continuous attacks of guided bombs [J]. Explosion and Shock Waves, 2010, 30(2): 220–224. DOI: 10.11883/1001-1455(2010)02-0220-05.