Optimal white noise coefficient in EEMD corrected zero drift signal of blasting acceleration
-
摘要: 为了有效降低振动信号误差以提高数据的可信度,先针对花岗岩爆破试验中的加速度零漂信号,使用集合经验模态分解(ensemble empirical mode decomposition,EEMD)与高低频处理相结合的方法进行修正;接着,根据信号冲击响应谱提出表征修正前后频域平均偏差幅度的修正指数;最后,基于频域和时域分别讨论了不同白噪声系数范围内信号的修正效果。分析表明:EEMD方法能够有效地消除爆破加速度信号的零漂现象,但对积分后速度信号的零漂趋势改善有限;随着白噪声系数增大,不同频段上修正指数均不同程度地增大,二者呈现幂指数关系;根据不同频段上的修正指数分析,可以确定不同零漂加速度信号对应的最优白噪声系数范围。本文提出的修正指数可为EEMD方法处理加速度零漂信号时白噪声系数的合理选取提供参考。Abstract: To reduce the deviation of vibration signals effectively and improve the reliability of the data, the method of combining the ensemble empirical mode decomposition (EEMD) and the processing of high and low frequency is first applied to correct the acceleration zero-drift signals collected in the blasting test of granite. Then, according to the shock response spectrum of vibration signals, a correction index is proposed to characterize the average deviation amplitude of the frequency domain between the original and the corrected signals. Finally, the correction effects of signals in different white noise coefficients are discussed based on the frequency domain and the time domain. The analysis shows that the EEMD method can effectively eliminate the zero-drift phenomenon of the acceleration signal, but the improvement of zero-drift trend of the velocity signal after integration is limited. With the increase of the white noise coefficient, the correction indices in different frequency bands increase to varied extents, and the power exponent relationship is presented between them. According to the modified exponential analysis in different frequency bands, the optimal white noise coefficient range corresponding to different acceleration zero-drift signals can be determined. The correction index proposed in this study can provide a reference for the reasonable selection of white noise coefficient when EEMD method is used to process the zero-drift signal of acceleration.
-
Key words:
- blasting signal /
- zero-drift /
- EEMD /
- white noise coefficient /
- shock response spectrum /
- correction index
-
表 1 不同白噪声系数下IMF分量主频
Table 1. Dominant frequencies of IMF components under different white noise coefficients
IMF分量 主频/Hz IMF分量 主频/Hz k=0.05 k=0.10 k=0.15 k=0.20 k=0.05 k=0.10 k=0.15 k=0.20 IMF1 18 860 18 740 18 760 18 760 IMF8 440 540 600 640 IMF2 18 880 18 800 18 840 1 800 IMF9 240 280 300 320 IMF3 7 500 8 420 8 480 8 500 IMF10 100 200 220 220 IMF4 5 100 7 520 7 520 7 520 IMF11 40 40 40 40 IMF5 2 280 3 180 5 160 5 160 IMF12 20 20 20 20 IMF6 1 240 1 360 1 560 2 340 IMF13 20 20 20 20 IMF7 660 740 800 840 δ 20 20 20 20 表 2 不同频段修正指数范围
Table 2. Ranges of correction index on different frequency bands
频段/Hz ${\bar D_{\min }}/{\text{%}} $ ${\bar D_{\max }}/{\text{%}} $ 频段/Hz ${\bar D_{\min }}/{\text{%}} $ ${\bar D_{\max }}/{\text{%}} $ (0, 40] 8.86 86.72 (4 000, 19 000] 0.79 1.88 (40, 30 000] 1.85 4.34 (19 000, 30 000] 0.37 0.85 (40, 4 000] 9.99 23.34 -
[1] 张耀平, 曹平, 高赛红, 等. 爆破振动信号的小波包分解及各频段的能量分布特征 [J]. 金属矿山, 2007, 37(11): 42–47. DOI: 10.3321/j.issn:1001-1250.2007.11.012.ZHANG Yaoping, CAO Ping, GAO Saihong, et al. Wavelet packet decomposition of blasting vibration signals and energy distribution characteristics of frequency bands [J]. Metal Mine, 2007, 37(11): 42–47. DOI: 10.3321/j.issn:1001-1250.2007.11.012. [2] 夏伟强, 马铁华, 范锦彪, 等. 压电式加速度传感器在高冲击环境下的零漂分析 [J]. 传感技术学报, 2007, 20(7): 1522–1527. DOI: 10.3969/j.issn.1004-1699.2007.07.017.XIA Weiqiang, MA Tiehua, FAN Jinbiao, et al. Analysis of zero-drift of the piezoelectric acceleration sensor in high- impact testing [J]. Chinese Journal of Sensorsand Actuators, 2007, 20(7): 1522–1527. DOI: 10.3969/j.issn.1004-1699.2007.07.017. [3] 张文伟, 庞家志, 杨仕超, 等. 低失真爆炸冲击信号零漂分析和处理方法 [J]. 爆炸与冲击, 2018, 38(3): 509–516. DOI: 10.11883/bzycj-2017-0251.ZHANG Wenwei, PANG Jiazhi, YANG Shichao, et al. Zero-drift analysis and processing of explosion shock with low di- stortion [J]. Explosion and Shock Waves, 2018, 38(3): 509–516. DOI: 10.11883/bzycj-2017-0251. [4] 郑水明, 周宝峰, 温瑞智, 等. 强震动加速度记录基线校正问题探讨 [J]. 大地测量与地球动力学, 2010, 30(3): 47–50. DOI: 10.3969/j.issn.1671-5942.2010.03.011.ZHENG Shuiming, ZHOU Baofeng, WEN Ruizhi, et al. Discussion on baseline correction of strong motion data [J]. Journal of Geodesy and Geodynamics, 2010, 30(3): 47–50. DOI: 10.3969/j.issn.1671-5942.2010.03.011. [5] 范锦彪, 祖静, 徐鹏, 等. 弹丸侵彻混凝土目标减加速度信号的处理原则 [J]. 探测与控制学报, 2012, 34(4): 1–5. DOI: 10.3969/j.issn.1008-1194.2012.04.001.FAN Jinbiao, ZU Jing, XU Peng, et al. Impact deceleration signal procession for concrete target penetration [J]. Journal of Detection and Control, 2012, 34(4): 1–5. DOI: 10.3969/j.issn.1008-1194.2012.04.001. [6] 龙源, 谢全民, 钟明寿, 等. 爆破震动测试信号预处理分析中趋势项去除方法研究 [J]. 工程力学, 2012, 29(10): 63–68. DOI: 10.6052/j.issn.1000-4750.2011.02.0093.LONG Yuan, XIE Quanmin, ZHONG Mingshou, et al. Research on trend removing methods in preprocessing analysis of blasting vibration monitoring signals [J]. Engineering Mechanics, 2012, 29(10): 63–68. DOI: 10.6052/j.issn.1000-4750.2011.02.0093. [7] 王燕, 薛云朝, 马铁华. 基于EMD和最小二乘法的零漂处理方法研究 [J]. 北京理工大学学报, 2015, 35(2): 118–122. DOI: 10.15918/j.tbit1001-0645.2015.02.002.WANG Yan, XUE Yunzhao, MA Tiehua. Research on zero drift processing method using EMD and Least-Square [J]. Transactions of Beijing Institute of Technology, 2015, 35(2): 118–122. DOI: 10.15918/j.tbit1001-0645.2015.02.002. [8] 王济. MATLAB在振动信号处理中的应用 [M]. 北京: 知识产权出版社, 2006: 73−82. [9] 谢全民, 龙源, 钟明寿. 基于小波、小波包两种方法的爆破振动信号对比分析 [J]. 工程爆破, 2009, 15(1): 5–9. DOI: 10.3969/j.issn.1006-7051.2009.01.002.XIE Quanmin, LONG Yuan, ZHONG Mingshou. Comparative analysis of blasting vibration signal based on wavelet and wavelet packets transform [J]. Engineering Blasting, 2009, 15(1): 5–9. DOI: 10.3969/j.issn.1006-7051.2009.01.002. [10] 吴祖堂, 杨德猛, 邹虹. 压电加速度传感器冲击测量中低频失真的理论分析与实验验证 [J]. 传感技术学报, 2010, 23(11): 1586–1589. DOI: 10.3969/j.issn.1004-1699.2010.11.014.WU Zutang, YANG Demeng, ZOU Hong. Theoretical analysis and validation of low frequency distortion of pezoelec- tricity accelerometer for shock measurement [J]. Chinese Journal of Sensors and Actuators, 2010, 23(11): 1586–1589. DOI: 10.3969/j.issn.1004-1699.2010.11.014. [11] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. DOI: 10.1098/rspa.1998.0193. [12] WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1–41. DOI: 10.1142/S1793536909000047. [13] JIANG H, LI C, LI H. An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis [J]. Me- chanical Systems and Signal Processing, 2013, 36(2): 225–239. DOI: 10.1016/j.ymssp.2012.12.010. [14] 范磊, 沈蔚. 爆破振动频谱特性实验研究 [J]. 爆破, 2001, 18(4): 18–20. DOI: 10.3963/j.issn.1001-487X.2001.04.006.FAN Lei, SHEN Wei. Experimental study on frequency spectrum characteristics of blast vibration wave [J]. Blasting, 2001, 18(4): 18–20. DOI: 10.3963/j.issn.1001-487X.2001.04.006. [15] 张继春. 三峡工程基岩爆破振动特性的试验研究 [J]. 爆炸与冲击, 2001, 21(2): 131–137.ZHANG Jichun. Vibration characteristics of blasting in bed rock mass at Sanxia Project [J]. Explosion and Shock Waves, 2001, 21(2): 131–137. [16] 张德丰. 详解MATLAB数字信号处理 [M]. 北京: 电子工业出版社, 2010: 325−328. [17] 文莉, 刘正士, 葛运建. 小波去噪的几种方法 [J]. 合肥工业大学学报(自然科学版), 2002, 25(2): 167–172. DOI: 10.3969/j.issn.1003-5060.2002.02.002.WEN Li, LIU Zhengshi, GE Yunjian. Several methods of wavelet denoising [J]. Journal of Hefei University of Techno- logy (Natural Science), 2002, 25(2): 167–172. DOI: 10.3969/j.issn.1003-5060.2002.02.002. [18] 卢文波, 赖世骧, 舒大强, 等. 关于爆破震动速度和加速度等效性问题的讨论 [J]. 爆破, 2000(S1): 11–14.LU Wenbo, LAI Shixiang, SHU Daqiang, et al. Discussion equivalence between blasting vibration velocity and acceler- ation [J]. Blasting, 2000(S1): 11–14. [19] 陆凡东, 方向, 郭涛, 等. EMD与SLS法在爆破振动加速度信号时域积分中的应用 [J]. 振动与冲击, 2012, 31(9): 90–93. DOI: 10.3969/j.issn.1000-3835.2012.09.018.LU Fandong, FANG Xiang, GUO Tao, et al. Application of EMD and SLS in time integration of blasting vibration acce- leration [J]. Journal of Vibration and Shock, 2012, 31(9): 90–93. DOI: 10.3969/j.issn.1000-3835.2012.09.018.