SHPB冲击作用下层状千枚岩多尺度破坏机理研究

武仁杰 李海波

武仁杰, 李海波. SHPB冲击作用下层状千枚岩多尺度破坏机理研究[J]. 爆炸与冲击, 2019, 39(8): 083106. doi: 10.11883/bzycj-2019-0187
引用本文: 武仁杰, 李海波. SHPB冲击作用下层状千枚岩多尺度破坏机理研究[J]. 爆炸与冲击, 2019, 39(8): 083106. doi: 10.11883/bzycj-2019-0187
WU Renjie, LI Haibo. Multi-scale failure mechanism analysis of layered phyllite subject to impact loading[J]. Explosion And Shock Waves, 2019, 39(8): 083106. doi: 10.11883/bzycj-2019-0187
Citation: WU Renjie, LI Haibo. Multi-scale failure mechanism analysis of layered phyllite subject to impact loading[J]. Explosion And Shock Waves, 2019, 39(8): 083106. doi: 10.11883/bzycj-2019-0187

SHPB冲击作用下层状千枚岩多尺度破坏机理研究

doi: 10.11883/bzycj-2019-0187
基金项目: 国家自然科学基金(51439008,51679231)
详细信息
    作者简介:

    武仁杰(1994- ),男,博士研究生,wu_renjie440@126.com

  • 中图分类号: O347.3

Multi-scale failure mechanism analysis of layered phyllite subject to impact loading

  • 摘要: 通过分离式霍普金森杆对层状千枚岩施加动态载荷,得到不同层理倾角下层状千枚岩的动态抗压强度与宏观破坏模式。采用三维激光仪获得断裂面细观形貌,引入分形几何定量计算断口面粗糙度;结合SEM观察到的微观尺度下不同层理倾角断口破坏机理,分析了不同层理倾角下层状岩石的动态破坏机制。研究结果表明:动态压缩下层理弱面对岩石的抗压强度影响较大;不同层理倾角千枚岩的断口形貌分形维数随层理倾角增大呈U型变化;从强度与裂纹扩展两方面考虑层理弱面对层状岩石破坏特征的影响,对于层理倾角为0°的试样,强度由岩石基质控制,但层理弱面仍对岩石破坏的裂纹分布与走向产生较大影响;对于层理倾角为22.5°的试样,强度与裂纹走向受岩石基质与层理弱面共同控制;对于层理倾角为45°~67.5°的试样,强度与裂纹走向受层理弱面控制;而对于层理倾角为90°的试样,动态抗压强度受岩石基质的影响较大,在层理弱面较早形成纵向宏观裂纹,导致该层理弱面角度下裂纹受层理弱面的影响较大。
  • 图  1  层状千枚岩微观结构

    Figure  1.  Microstructure of layered phyllite

    图  2  层状千枚岩层理弱面倾角

    Figure  2.  Bedding angle of layered phyllite

    图  3  SHPB试验系统[15]

    Figure  3.  SHPB test system[15]

    图  4  层状千枚岩动态冲击试验应变率时程结果

    Figure  4.  Test results of strain rate history according to layered phyllite dynamic impact

    图  6  层状千枚岩动态冲击试验所得破坏形态

    Figure  6.  Typical macroscopic fractured modes of layered phyllite dynamic impact test results

    图  5  层状千枚岩动态冲击典型应力应变曲线

    Figure  5.  Typical stress-stain curve of layered phyllite dynamic impact test

    图  7  三维激光扫描仪形貌采集

    Figure  7.  Image acquisition of three-dimensional laser scanner

    图  8  不同层理弱面千枚岩三维形貌图

    Figure  8.  3D mesoscopic graphs of phyllites with different bedding angle

    图  9  不同层理角度弱面千枚岩断口形貌分形维数

    Figure  9.  Fractal dimension of fracture surface for phyllite with different bedding angles

    图  10  分形维数随层理倾角的变化

    Figure  10.  Fractal dimension of different bedding angle

    图  11  不同层理弱面的千枚岩断口SEM图片

    Figure  11.  SEM images of the fracture surfaces for phyllite with different bedding angle

    图  12  波浪形台阶及层间撕裂形成示意图[16]

    Figure  12.  Schematic diagram of the formation of wavy steps and interlayer tear[16]

    表  1  SHPB试验结果

    Table  1.   Experimental results of SHPB tests

    层理倾角/(°)冲击速度/(m∙s−1)应变率/s−1峰值应变率/s−1峰值应力/MPa
    014.8280.18114.54247.95
    014.9788.35118.96254.47
    014.8682.28123.84241.75
    22.514.8291.43120.64215.64
    22.514.9697.39127.95221.35
    22.514.7994.48130.14206.74
    4514.97136.73173.88148.42
    4514.84132.50166.84142.86
    4514.89129.95161.29138.24
    67.514.72140.09178.73121.89
    67.514.74135.73173.38118.83
    67.514.94141.48184.87126.89
    9014.83134.60172.64185.90
    9014.85136.95176.95197.73
    9014.98130.74163.10177.43
    下载: 导出CSV
  • [1] JAEGER J C. Shear failure of anisotropic rocks [J]. Geological Magazine, 1960, 97(1): 65–72. DOI: 10.1017/S0016756800061100.
    [2] 吴亮, 李凤, 卢文波, 等. 爆破扰动下邻近层状围岩隧道的稳定性与振速阈值 [J]. 爆炸与冲击, 2017, 37(2): 208–214. DOI: 10.11883/1001-1455(2017)02-0208-07.

    WU Liang, LI Feng, LU Wenbo, et al. Vibration velocity threshold of a tunnel adjacent to surrounding layered rocks under blasting load [J]. Explosion And Shock Waves, 2017, 37(2): 208–214. DOI: 10.11883/1001-1455(2017)02-0208-07.
    [3] POTYONDY O D. The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions [J]. Geosystem Engineering, 2015, 18(1): 1–28. DOI: 10.1080/12269328.2014.998346.
    [4] 裴建良, 苏立, 刘建锋, 等. 层状大理岩间接拉伸试验及断口形貌和断裂机理分析 [J]. 工程科学与技术, 2014, 46(4): 39–45. DOI: 10.15961/j.jsuese.2014.04.002.

    PEI Jianliang, SU Li, LIU Jianfeng, et al. Indirect tensile test of layered marble and analysis of fracture morphology and mechanism [J]. Advanced Engineering Sciences, 2014, 46(4): 39–45. DOI: 10.15961/j.jsuese.2014.04.002.
    [5] TIEN Y M, KUO M C, JUANG C H. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(8): 1163–1181. DOI: 10.1016/j.ijrmms.2006.03.011.
    [6] MA T, PENG N, ZHU Z, et al. Brazilian tensile strength of anisotropic rocks: Review and new insights [J]. Energies, 2018, 11(2): 304. DOI: 10.3390/en11020304.
    [7] 李先炜, 兰勇瑞, 邹俊兴. 岩石断口分析 [J]. 中国矿业学院学报, 1983, 12(1): 15–21.

    LI Xianwei, LAN Yongrui, ZOU Junxing. A study of rock fractures [J]. Journal of China University of Mining & Technology, 1983, 12(1): 15–21.
    [8] 谢和平, 陈至达. 断口定量分析的分形几何方法 [J]. 工程力学, 1989, 6(4): 1–8.

    XIE Heping, CHEN Zhida. The method of fractal geometry for quantitative analysis of fracture surfaces [J]. Engineering Mechanics, 1989, 6(4): 1–8.
    [9] 王礼立. 爆炸与冲击载荷下结构和材料动态响应研究的新进展 [J]. 爆炸与冲击, 2001, 21(2): 81–88. DOI: 10.3321/j.issn:1001-1455.2001.02.001.

    WANG Lili. Progress in studies on dynamic response of structures and materials under explosive/impact loading [J]. Explosion and Shock Waves, 2001, 21(2): 81–88. DOI: 10.3321/j.issn:1001-1455.2001.02.001.
    [10] LI X F, ZHANG Q B, LI H B, et al. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading [J]. Rock Mechanics and Rock Engineering, 2018, 51(12): 3785–3817. DOI: 10.1007/s00603-018-1566-2.
    [11] 李海波, 王建伟, 李俊如, 等. 单轴压缩下软岩的动态力学特性试验研究 [J]. 岩土力学, 2004, 25(1): 1–4. DOI: 10.3969/j.issn.1000-7598.2004.01.001.

    LI Haibo, WANG Jianwei, LI Junru, et al. Mechanical properties of soft rock under dynamic uniaxial compression [J]. Rock and Soil Mechanics, 2004, 25(1): 1–4. DOI: 10.3969/j.issn.1000-7598.2004.01.001.
    [12] ZHANG Q B, ZHAO J. Effect of loading rate on fracture toughness and failure micromechanisms in marble [J]. Engineering Fracture Mechanics, 2013, 102: 288–309. DOI: 10.1016/j.engfracmech.2013.02.009.
    [13] ZHANG Z X, KOU S Q, JIANG L G, et al. Effects of loading rate on rock fracture: fracture characteristics and energy partitioning [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 745–762. DOI: 10.1016/S1365-1609(00)00008-3.
    [14] ULUSAY R. The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014 [M]. Berlin: Springer International Publishing, 2014: 35−44. DOI: 10.1007/978-3-319-07713-0
    [15] LI X F, LI X, LI H B, et al. Dynamic tensile behaviours of heterogeneous rocks: The grain scale fracturing characteristics on strength and fragmentation [J]. International Journal of Impact Engineering, 2018, 118: 98–118. DOI: 10.1016/j.ijimpeng.2018.04.006.
    [16] LI X F, LI H B, ZHANG Q B, et al. Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law [J]. Engineering Fracture Mechanics, 2018, 199: 739–759. DOI: 10.1016/j.engfracmech.2018.06.024.
    [17] 李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究 [J]. 岩石力学与工程学报, 2017(10): 57–69. DOI: 10.13722/j.cnki.jrme.2017.0539.

    LI Xiaofeng, LI Haibo, LIU Kai, et al. Dynamic properties and fracture characteristics of rocks subject to impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2017(10): 57–69. DOI: 10.13722/j.cnki.jrme.2017.0539.
    [18] 张亚衡, 周宏伟, 谢和平. 粗糙表面分形维数估算的改进立方体覆盖法 [J]. 岩石力学与工程学报, 2005(17): 3192–3196. DOI: 10.3321/j.issn:1000-6915.2005.17.030.

    ZHANG Yaheng, ZHOU Hongwei, XIE Heping. Improved cubic covering method for fractal dimensions of a fracture surface of rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2005(17): 3192–3196. DOI: 10.3321/j.issn:1000-6915.2005.17.030.
    [19] DEREK H. 断口形貌学[M]. 李晓刚, 董超芳, 杜翠薇, 等译. 北京: 科学出版社, 2009: 93−109.
    [20] TOLANSKY S. Surface microtophgraphy [M]. London: Longmans, 1960: 78−89. DOI: 10.1021/ja01469a074.
    [21] TAKAHASHI K. Dynamic fracture instability in glassy polymers as studied by ultrasonic fractography [J]. Polymer Engineering & Science, 2010, 27(1): 25–32. DOI: 10.1002/pen.760270105.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  6306
  • HTML全文浏览量:  1670
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-30
  • 修回日期:  2019-05-23
  • 网络出版日期:  2019-07-25
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回