A characteristic energy factor for deformation and failure of deep rock masses and its application
-
摘要: 深部岩体在高地应力作用下储存了大量的弹性应变能。在开挖或爆破扰动作用下,原有的平衡状态被打破,围岩中形成了有势场和不平衡应力场。在不平衡力场和扰动场的共同作用下,岩体的变形与破坏表现出了诸如分区破裂化、大变形、岩爆以及人工地震等非线性行为。传统的连续介质理论并不能考虑岩体的构造特性与含能特性,因此无法很好地解释深部岩体的特殊非线性力学现象。特征能量因子从能量的角度出发,结合统计物理学观点,为分析深部岩体在动静荷载组合作用下的变形和破坏过程提供了有效的理论支撑。本文主要对特征能量因子进行了简要介绍,并回顾了其在深部岩体分区破裂以及动力诱发围岩不可逆变形等非线性工程灾害现象中的应用。Abstract: As high elastic strain energy is stored in deep rock masses with high geo-stress, the initial equilibrium state in rock masses is broken as a result of excavation and explosion, thus forming the unbalanced force and energy field forms. The deformation and fracture of rock masses exhibit remarkable nonlinearity, such as zonal disintegration, large deformation, rockburst and artificial earthquake, under the combination of unbalanced force field and disturbance of dynamic loads, which leads to the special stress state for the deep rock masses. The classic continuum theory does not consider the natural discrete and energetic characteristics, and therefore cannot describe the nonlinear mechanical behavior of deep rock masses. Combining statistical physics, the characteristic energy factor provides a powerful theoretical proof for studying the deformation and fracture process of deep rock masses under the action of dynamic and static loading. In this paper, the characteristic energy factor is introduced briefly and its applications in engineering disasters such as zonal disintegration and irreversible deformation are reviewed.
-
表 1 不同岩体中系数A和n的统计值
Table 1. Statistical values of A and n
岩体 花岗岩 盐岩 凝灰岩 A (10~13)×103 (8~10)×103 (3~4)×103 n 1.6~1.75 1.6 1.6 表 2 地下核爆炸不可逆位移实测数据[34]
Table 2. Experimental results of irreversible deformation of underground explosion
核爆炸
试验岩性 当量/
kt埋深/
m不可逆位移
半径/(m·kt−1/3)kd(×10−10) Greeley 凝灰岩 825 1 215 570 4.9 Duryea 流纹岩 65 547 239 8.0 Boxcar 凝灰岩 1 200 1 160 584 4.6 Benham 凝灰岩 1 100 1 400 1 260 1.6 Milrow 枕熔岩 1 000 1 219 809 1.6 -
[1] 王梦恕. 21世纪是隧道及地下空间发展的年代 [J]. 铁道建筑技术, 2000, 1: 2–4. DOI: 10.3969/j.issn.1009-4539.2000.01.002.WANG Mengshu. 21st century: the time for the great development of tunnels and underground space [J]. Railway Construction Technology, 2000, 1: 2–4. DOI: 10.3969/j.issn.1009-4539.2000.01.002. [2] 钱七虎. 深部地下空间开发中的关键科学问题 [C] // 钱七虎院士论文选集. 北京: 科学出版社, 2007: 549−568. [3] 钱七虎, 任辉启. 深地下防护工程中的科学问题 [C] // 钱七虎院士论文选集. 北京: 科学出版社, 2007: 635−648. [4] 尼尔森R W. 低当量钻地核武器 [J]. 杨凯旋, 译. 核武器与高技术, 2001(3): 1−7. [5] KRISTEN H M, NORRIS R S. The B61 family of nuclear bombs [J]. Bulletin of the Atomic Scientists, 2014, 70(3): 79–84. DOI: 10.1177/0096340214531546. [6] 钱七虎. 战略防护工程面临的核钻地弹威胁及连续介质力学模型的不适用性 [C] // 钱七虎院士论文选集. 北京: 科学出版社, 2007: 374−382. [7] SADOVSKY M A. Natural lumpiness of rocks [J]. Doklady Akademii nauk SSSR, 1979, 247(4): 829–832. [8] 戚承志, 钱七虎, 王明洋, 等. 岩体的构造层次及其成因 [J]. 岩石力学与工程学报, 2005, 24(16): 2838–2846. DOI: 10.3321/j.issn:1000-6915.2005.16.005.QI Chengzhi, QIAN Qihu, WANG Mingyang, et al. Structural hierarchy of rock mass and mechanism of its formation [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2838–2846. DOI: 10.3321/j.issn:1000-6915.2005.16.005. [9] 戚承志, 钱七虎, 王明洋. 岩体的构造层次粘性及动力强度 [J]. 岩石力学与工程学报, 2005, 24(S1): 4679–4687.QI Chengzhi, QIAN Qihu, WANG Mingyang. The structural hierarchy viscosity and dynamic strength of rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S1): 4679–4687. [10] CRISTESCU N D. New trends in rock mechanics [J]. International Applied Mechanics, 2002, 38(1): 1–22. DOI: 10.1023/A:1015364607665. [11] 陈宗基. 岩爆的工程实录、理论和控制 [J]. 岩石力学与工程学报, 1987, 6(1): 1–18.CHEN Zongji. Rockbursts, case records, theory and control [J]. Chinese Journal of Rock Mechanics and Engineering, 1987, 6(1): 1–18. [12] 王明洋, 周泽平, 钱七虎. 深部岩体的构造和变形与破坏问题 [J]. 岩石力学与工程学报, 2006, 25(3): 448–455. DOI: 10.3321/j.issn:1000-6915.2006.03.002.WANG Mingyang, ZHOU Zeping, QIAN Qihu. Tectonic, deformation and failure problems of deep rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 448–455. DOI: 10.3321/j.issn:1000-6915.2006.03.002. [13] 钱七虎. 深部岩体工程相应的特征科学现象及" 深部”的界定 [J]. 东华理工学院学报, 2004, 27(1): 1–5. DOI: 10.3969/j.issn.1674-3504.2004.01.001.QIAN Qihu. The characteristic scientific phenomena of engineering response to deep rock mass and the implication of deepness [J]. Journal of East China University of Technology, 2004, 27(1): 1–5. DOI: 10.3969/j.issn.1674-3504.2004.01.001. [14] 钱七虎, 李树忱. 深部岩体工程围岩分区破裂化现象研究综述 [J]. 岩石力学与工程学报, 2008, 27(6): 1278–1284. DOI: 10.3321/j.issn:1000-6915.2008.06.024.QIAN Qihu, LI Shuchen. A review of research on zonal disintegration phenomenon in deep rock mass engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1278–1284. DOI: 10.3321/j.issn:1000-6915.2008.06.024. [15] SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of around underground workings: Part I: date of on-site observations [J]. Journal of Mining Science, 1986, 22(3): 157–168. DOI: 10.1007/BF02500863. [16] KURLENYA M V, OPARIN V N, VOSTRIKOV V I. Anomalously low friction in block media [J]. Journal of Mining Science, 1997, 33(1): 1–11. DOI: 10.1007/BF02765421. [17] KURLENYA M V, OPARIN V N, VOSTRIKOV V I. Effect of anomalously low friction in block media [J]. Journal of Applied Mechanics and Technical Physics, 1999, 40(6): 1116–1120. DOI: 10.1007/BF02469182. [18] 陈昊祥. 深部巷道围岩分区破裂非线性连续模型的数值研究 [D]. 北京: 北京建筑大学, 2016: 7−8. [19] SADOVSKY M A, VOLKHOVITINOV L G, PISARENKO V F. Deformation of a geophysical medium and the seismic process [M]. Moscow: Science Press, 1987: 5−14. [20] QI C, CHEN H, BAI J, et al. Viscosity of rock mass at different structural levels [J]. Acta Geotechnica, 2017, 12(2): 305–320. DOI: 10.1007/s11440-016-0449-5. [21] 戚承志, 钱七虎. 岩体动力变形与破坏的基本问题 [M]. 北京: 科学出版社, 2009: 182−183. [22] 钱七虎, 王明洋. 岩土中的冲击爆炸效应 [M]. 北京: 国防工业出版社, 2010: 101−124. [23] 李杰. 深部岩体卸荷力学机理及其本构模型 [D]. 南京: 解放军理工大学, 2012: 1−2. [24] 范鹏贤, 王明洋, 钱七虎. 深部非均匀岩体卸载拉裂的时间效应和主要影响因素 [J]. 岩石力学与工程学报, 2010, 29(7): 1389–1396.FAN Pengxian, WANG Mingyang, QI Qihu. Time effect and main influence factors of unloading splitting of deep-seated rock with non-uniformities [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(7): 1389–1396. [25] LIM S S, MARTIN C D. Core disking and its relationship with stress magnitude for Lac du Bonnet granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 254–264. DOI: 10.1016/j.ijrmms.2009.11.007. [26] REVUZHENKO P. Mechanics of elastoplastic media and nonstandard analysis [M]. Novosbisk: Izd NGU, 2000: 88−109. [27] KURLENYA M V, OPARIN V N, VOSTRIKOV V I. One approach to the prediction of rock bursts [J]. Journal of Mining Science, 1998: 647–650. DOI: 10.1007/BF02562390. [28] WANG Mi, LI J, MA L, et al. Study on the characteristic energy factor of the deep rock massunder weak disturbance [J]. Rock Mechanics and Rock Engineering, 2016, 49: 3165–3173. DOI: 10.1007/s00603-016-0968-2. [29] 王德荣, 李杰, 钱七虎. 深部地下空间周围岩体性能研究探讨 [J]. 地下空间与工程学报, 2006, 2(4): 542–546. DOI: 10.3969/j.issn.1673-0836.2006.04.005.WANG Derong, LI Jie, QIAN Qihu. Study on characteristics of rock mass near deep underground space [J]. Chinese Journal of Underground Space and Engineering, 2006, 2(4): 542–546. DOI: 10.3969/j.issn.1673-0836.2006.04.005. [30] KURLENYA M V, OPARIN V N. Problems of nonlinear geomechanics: Part II [J]. Journal of Mining Science, 2000, 36(4): 304–326. DOI: 10.1023/A:1026673105750. [31] 李杰, 蒋海明, 王明洋, 等. 爆炸与冲击中的非线性岩石力学问题(II): 冲击扰动诱发岩块滑移的物理模型试验 [J]. 岩石力学与工程学报, 2018, 37(2): 291–301. DOI: 10.13722/j.cnki.jrme.2017.0684.LI Jie, JIANG Haiming, WANG Mingyang, et al. Nonlinear mechanical problems in rock explosion and shock: Part II: physical model test on sliding of rock blocks triggered by external disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 291–301. DOI: 10.13722/j.cnki.jrme.2017.0684. [32] 王明洋, 陈昊祥, 李杰, 等. 深部巷道分区破裂化计算理论与实测对比研究 [J]. 岩石力学与工程学报, 2018, 37(10): 2209–2218. DOI: 10.13722/j.cnki.jrme.2018.0458.WANG Mingyang, CHEN Haoxiang, LI Jie, et al. Theoretical research on zonal disintegration of rock masses around deep tunnels and comparisons with in-situ observations [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2209–2218. DOI: 10.13722/j.cnki.jrme.2018.0458. [33] KURLENYA M V, OPARIN V N. Problems of nonlinear geomechanics: Part 1 [J]. Journal of Mining Science, 1999, 35(3): 216–230. DOI: 10.1007/BF02550237. [34] 王明洋, 李杰. 爆炸与冲击的非线性岩石力学问题III: 地下核爆炸诱发工程性地震效应的计算原理及应用 [J]. 岩石力学与工程学报, 2019, 38(04): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.WANG Mingyang, LI Jie. Nonlinear mechanical problems in rock explosion and shock: Part III: the calculation principle of engineering seismic effects induced by underground nuclear explosion and underground protection [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(04): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078. [35] SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of around underground workings: Part IV: practical applications [J]. Journal of Mining Science, 1989, 25(4): 297–302. DOI: 10.1007/BF02528546. [36] 方祖烈. 软岩巷道维护原理与控制措施 [C] // 何满潮. 中国煤矿软岩巷道支护理论与实践. 北京: 煤炭工业出版社, 1996: 64−70.FANG Zulie. Support principles for roadway in soft rock and its controlling measures [C] // HE Manchao. Soft Rock Tunnel Support in Chinese Mines: Theory and Practice. Beijing: China Coal Industry Publishing House, 1996: 64−70. [37] 李术才, 王汉鹏, 钱七虎, 等. 深部巷道围岩分区破裂现象现场监测研究 [J]. 岩石力学与工程学报, 2008, 27(8): 1545–1553. doi: 10.3321/j.issn:1000-6915.2008.08.003LI Shucai, WANG Hanpeng, QIAN Qihu, et al. In-situ monitoring research on zonal disintegration of surrounding rock mass in deep mine roadways [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1545–1553. doi: 10.3321/j.issn:1000-6915.2008.08.003