Research on low frequency characteristics and compensation method of a shock wave test system
-
摘要: 为提高冲击波超压峰值的测量精度,多数学者把重点集中在系统高频特性研究上,以拓宽带宽的方式提高峰值测试的准确性。冲击波另外两个主要参数正压作用时间、比冲量却和测试系统的低频特性息息相关。针对实爆中出现的不同传感器正压作用时间差异较大的问题,对冲击波信号进行了边际谱分析,获得了信号的低频特性。建立了一阶参数模型来表征低频特性,通过激波管试验数据获取了7种系统的低频模型参数。采用零极点配置法设计了低频补偿模型。结果表明:冲击波测试系统低频特性严重影响冲击波信号正压作用时间测试准确性,基于低频特性补偿的数据处理方法可以有效的提高冲击波信号正压作用时间、比冲量地测试精度。Abstract: In order to improve the measurement accuracy of shock wave overpressure peak, most scholars focus on the study of high-frequency characteristics of the system for improving the accuracy of peak value measurement by broadening the bandwidth. The other two main parameters of the shock wave, positive pressure action time and specific impulse, are closely related to the low frequency characteristics of the test system. Aimed at the problem that the positive pressure action time of different sensors varies greatly in real explosion, the marginal spectrum analysis of the shock wave signal was carried out, and the low frequency characteristics of the signals were obtained. A first-order parametric model was established to characterize the low-frequency characteristics, and the low-frequency model parameters of seven systems were obtained from the experimental data of shock tube. The low-frequency compensation model was designed by the zero pole configuration method. The results show that the low-frequency characteristics of shock wave testing systems seriously affect the accuracy of positive pressure action time measurement of shock wave signals. The data processing method based on the low-frequency characteristic compensation can effectively improve the measurement accuracy of positive pressure action time and specific impulse of shock wave signals.
-
表 1 实测冲击波信号参数对比表
Table 1. Parameter comparison of measured shock wave signals
试验次数 爆距 R/m Δp/MPa εp/% t+/ms εt/% i/(MPa·ms) εi/% Y1001E-3 113B26 Y1001E-3 113B26 Y1001E-3 113B26 第一次 10 0.147 0.150 2.0 1.637 2.924 44.0 0.077 0.144 46.5 12 0.099 0.097 2.1 1.755 3.273 46.4 0.049 0.109 55.0 第二次 10 0.149 0.145 2.7 1.603 2.935 45.4 0.082 0.150 45.3 12 0.101 0.103 1.9 1.739 3.214 45.9 0.051 0.105 51.4 表 2 实验状态表
Table 2. Experimental conditions
系统编号 传感器类型 适配器 采集系统 1 ENDEVCO 8530B 系列压阻传感器 ENDEVCO136 型直流放大器 Agilent 瞬态波形记录仪 2 PCB 113B03 系列压电传感器 Kistler 5011 型电荷放大器放电时间常数 T=long Agilent 瞬态波形记录仪 3 PCB 113B03 系列压电传感器 Kistler 5011 型电荷放大器放电时间常数 T=10 s Agilent 瞬态波形记录仪 4 PCB 113B03 系列压电传感器 Kistler 5011 型电荷放大器放电时间常数 T=1 s Agilent 瞬态波形记录仪 5 PCB 113B03 系列压电传感器 Kistler 5011 型电荷放大器放电时间常数 T=0.1 s Agilent 瞬态波形记录仪 6 PCB 113B03 系列压电传感器 Kistler 5011 型电荷放大器放电时间常数 T=0.01 s Agilent 瞬态波形记录仪 7 PCB 113B26 系列 ICP 型传感器 带隔直电容调理电路 自制存储式记录仪 8 国产 Y1001E-3 系列 ICP 型传感器 带隔直电容调理电路 自制存储式记录仪 表 3 不同测试系统对应的总耦合放电时间常数TC
Table 3. Total coupled discharge time constant TC for different test systems
系统编号 总耦合放电时间常数 TC/s 对应低频截止频率/Hz 1 — — 2 0.110 8 1.44 3 0.043 3 3.68 4 0.038 0 4.19 5 0.030 6 5.20 6 0.006 5 24.49 7 0.004 0 39.79 8 0.002 1 75.79 表 4 相关系数表
Table 4. Correlation coefficient
系统 1 2 3 4 5 6 7 8 相关系数 0.999 7 0.999 3 0.999 3 0.999 6 0.999 5 0.999 3 0.999 4 0.999 0 表 5 补偿冲击波信号参数
Table 5. Parameters for compensating shock wave signals
传感器类型 Δp/MPa εp /% t+ /ms εt /% i/(MPa·ms) εi /% Y1001E-3 0.154 2 1.31 5.67 7.95 0.218 0 14.94 113B26 0.152 2 6.16 0.256 3 -
[1] 祖静, 马铁华, 裴东兴, 范锦彪.新概念动态测试 [M]. 北京: 国防工业出版社, 2016: 286−295. [2] 郭士旭, 余尚江, 陈晋央, 等. 压电式压力传感器动态特性补偿技术研究 [J]. 振动与冲击, 2016, 35(2): 136–140.GUO Shixu, YU Shangjiang, CHEN Jinyang, et al. Research on dynamic characteristics compensation technology of piezoelectric pressure sensor [J]. Journal of Vibration and Shock, 2016, 35(2): 136–140. [3] 孔霖, 苏健军, 杨凡. 冲击波反射压测量曲线的动态修正与补偿方法 [J]. 爆炸与冲击, 2017, 37(6): 1051–1056. DOI: 10.11883/1001-1455(2017)06-1051-06.KONG Lin, SU Jianjun, YANG Fan. Dynamic correction and compensation method of shock wave reflection pressure measurement curve [J]. Explosion and Shock Waves, 2017, 37(6): 1051–1056. DOI: 10.11883/1001-1455(2017)06-1051-06. [4] 魏娟, 张志杰, 赵晨阳, 等. 冲击波测试系统中压力传感器的实时动态补偿实现 [J]. 传感技术学报, 2018, 31(4): 545–550. DOI: 10.3969/j.issn.1004-1699.2018.04.026.WEI Juan, ZHANG Zhijie, ZHAO Chenyang, et al. Real-time dynamic compensation implementation of pressure sensor in shock wave test system [J]. Journal of Transduction Technology, 2018, 31(4): 545–550. DOI: 10.3969/j.issn.1004-1699.2018.04.026. [5] 刘一江, 孟立凡, 张志杰, 等. 冲击波测试系统中传感器动态补偿装置 [J]. 传感技术学报, 2012, 25(11): 1516–1521. DOI: 10.3969/j.issn.1004-1699.2012.011.010.LIU Yijiang, MENG Lifan, ZHANG Zhijie, et al. Sensor dynamic compensation device in shock wave test system [J]. Journal of Transduction Technology, 2012, 25(11): 1516–1521. DOI: 10.3969/j.issn.1004-1699.2012.011.010. [6] 王啸, 韩太林, 张恩奎, 等. 基于烟花算法的压阻式压力传感器动态补偿方法 [J]. 兵工学报, 2017, 38(11): 149–156.WANG Xiao, HAN Tailin, ZHANG Enkui, et al. Dynamic compensation method of piezoresistive pressure sensor based on fireworks algorithm [J]. Acta Armamentarii, 2017, 38(11): 149–156. [7] 刘浩. 冲击波测试系统与动态特性补偿研究[D]. 太原: 中北大学, 2017. [8] 赖富文, 张志杰, 张建宇, 等. 基于动态特性补偿的冲击波测试数据处理方法 [J]. 爆炸与冲击, 2015, 35(6): 871–875. DOI: 10.11883/1001-1455(2015)06-0871-05.LAI Fuwen, ZHANG Zhijie, ZHANG Jianyu, et al. Data processing method of shock wave test based on dynamic characteristic compensation [J]. Explosion and Shock Waves, 2015, 35(6): 871–875. DOI: 10.11883/1001-1455(2015)06-0871-05. [9] 杜红棉, 何志文, 马铁华. 冲击波超压测试系统二次仪表频域特性 [J]. 爆炸与冲击, 2015, 35(2): 261–266. DOI: 10.11883/1001-1455(2015)02-0261-06.DU Hongmian, HE Zhiwen, MA Tiehua. Frequency domain characteristics of secondary instrument in shock wave overpressure test system [J]. Explosion and Shock Waves, 2015, 35(2): 261–266. DOI: 10.11883/1001-1455(2015)02-0261-06. [10] 王新颖, 王树山, 卢熹, 等. 空中爆炸冲击波对生物目标的超压-冲量准则 [J]. 爆炸与冲击, 2018, 38(1): 106–121. DOI: 10.11883/bzycj-2017-0031.WANG Xinxin, WANG Shushan, LU Wei, et al. Overpressure-impulse criterion of airborne shock waves on biological targets [J]. Explosion and Shock Waves, 2018, 38(1): 106–121. DOI: 10.11883/bzycj-2017-0031. [11] LI L, WANG F, SHANG F, et al. Energy spectrum analysis of blast waves based on an improved Hilbert–Huang transform [J]. Shock Waves, 2017, 27(3): 487–494. DOI: 10.1007/s00193-016-0667-7. [12] 李丽萍, 孔德仁, 苏建军, 等. 基于能量谱的爆炸冲击波毁伤特性研究 [J]. 振动与冲击, 2015, 34(21): 71–75.LI Liping, KONG Deren, SU Jianjun, et al. Study on damage characteristics of explosion shock wave based on energy spectrum [J]. Journal of Vibration and Shock, 2015, 34(21): 71–75. [13] 张文娜. 压力传感器的辨识建模及动态补偿技术研究[D]. 长沙: 国防科学技术大学, 2002. [14] 杨文杰, 张志杰, 赵晨阳, 等. 基于零极点配置理论的压力传感器动态特性补偿 [J]. 科学技术与工程, 2016, 16(2): 78–82. DOI: 10.3969/j.issn.1671-1815.2016.02.015.YANG Wenjie, ZHANG Zhijie, ZHAO Chenyang, et al. Dynamic characteristics compensation of pressure sensor based on zero pole placement theory [J]. Science Technology and Engineering, 2016, 16(2): 78–82. DOI: 10.3969/j.issn.1671-1815.2016.02.015.