有限空间爆炸静态压力的温度补偿方法

张龙 邹虹 张宝国 张继军 张东亮 孔德骞

张龙, 邹虹, 张宝国, 张继军, 张东亮, 孔德骞. 有限空间爆炸静态压力的温度补偿方法[J]. 爆炸与冲击, 2020, 40(3): 034102. doi: 10.11883/bzycj-2019-0234
引用本文: 张龙, 邹虹, 张宝国, 张继军, 张东亮, 孔德骞. 有限空间爆炸静态压力的温度补偿方法[J]. 爆炸与冲击, 2020, 40(3): 034102. doi: 10.11883/bzycj-2019-0234
ZHANG Long, ZOU Hong, ZHANG Baoguo, ZHANG Jijun, ZHANG Dongliang, KONG Deqian. A temperature compensation method for explosion static pressure in finite space[J]. Explosion And Shock Waves, 2020, 40(3): 034102. doi: 10.11883/bzycj-2019-0234
Citation: ZHANG Long, ZOU Hong, ZHANG Baoguo, ZHANG Jijun, ZHANG Dongliang, KONG Deqian. A temperature compensation method for explosion static pressure in finite space[J]. Explosion And Shock Waves, 2020, 40(3): 034102. doi: 10.11883/bzycj-2019-0234

有限空间爆炸静态压力的温度补偿方法

doi: 10.11883/bzycj-2019-0234
详细信息
    作者简介:

    张 龙(1992- ),男,硕士,助理工程师,zhanglonglxy@163.com

  • 中图分类号: O389;TP212

A temperature compensation method for explosion static pressure in finite space

  • 摘要: 为改善压阻式压力传感器的温度漂移特性,构建了基于遗传算法和小波神经网络的压力传感器温度补偿模型。针对小波神经网络收敛速度慢且易陷入局部最优解的问题,采用遗传算法对小波神经网络的连接权值、伸缩参数和平移参数进行优化。基于压力传感器的标定数据,分别采用BP神经网络、小波神经网络和遗传小波神经网络对其进行温度补偿研究,结果表明:遗传小波神经网络兼容了小波分析的时频局部特性和神经网络的自学习能力,表现出良好的收敛速度和补偿精度,经补偿后传感器的输出值更接近于标定值,其最大误差由−17.44 kPa变至0.38 kPa,最大相对误差由−14.0%变至0.38%。将该模型应用于有限空间爆炸静态压力的温度补偿中,取得了较好的实际应用效果。
  • 图  1  3层小波神经网络结构

    Figure  1.  Three-layer wavelet neural network

    图  2  传感器输出值的相对误差曲线

    Figure  2.  Relative error curves of sensor output values

    图  3  BP神经网络模型补偿误差

    Figure  3.  Compensation errors of the BP neural network model

    图  4  小波神经网络模型补偿误差

    Figure  4.  Compensation errors of the wavelet neural network model

    图  5  遗传小波神经网络模型补偿误差

    Figure  5.  Compensation errors of the genetic wavelet neural network model

    图  6  补偿后传感器输出值的相对误差曲线

    Figure  6.  Relative error curves of sensor output values after compensation

    图  7  传感器防护装置

    Figure  7.  The sensor protection device

    图  8  爆炸静态压力的温度补偿结果

    Figure  8.  Temperature compensation results of explosion static pressure

    表  1  传感器标定数据

    Table  1.   The sensor calibration data

    标定压力/kPa不同标定温度下的输出值/kPa
    20 ℃30 ℃40 ℃50 ℃60 ℃70 ℃80 ℃
    100 99.56 98.19 97.25 95.69 94.13 90.69 86.00
    150149.44148.19146.94145.38143.50140.06135.69
    200199.13198.19197.25195.38193.19189.75185.06
    250249.13248.19247.25245.38243.19239.75234.75
    300299.13298.50297.25295.38293.19289.44284.75
    350349.13348.19346.94345.38342.88339.13334.13
    400399.13398.50396.94395.38392.88389.13383.81
    450448.81448.19446.94445.38442.88439.13433.50
    500499.13498.19496.94495.38492.56488.81483.18
    550548.81548.50546.94545.38542.56538.50533.18
    600599.13598.19596.94595.38592.56588.50582.56
    下载: 导出CSV

    表  2  各标定温度下传感器输出误差比较

    Table  2.   Comparison of output errors of the sensor at each calibration temperature

    标定温度/℃最大误差/kPa标准差/kPa标定温度/℃最大误差/kPa标准差/kPa
    20−1.190.2260 −7.440.47
    30−1.810.1470−11.500.67
    40−3.060.1680−17.441.10
    50−4.620.09
    下载: 导出CSV

    表  3  3种模型补偿精度和收敛速度比较

    Table  3.   Comparison of compensation accuracy and convergence rate of three models

    补偿模型误差分布区间/kPa误差标准差/kPa迭代次数收敛时间/s
    BP神经网络[−0.806 4,0.981 1]0.351 2943.627 1
    小波神经网络[−0.697 0,0.507 3]0.192 2652.542 3
    遗传小波神经网络[−0.360 3,0.380 9]0.186 5371.635 9
    下载: 导出CSV

    表  4  补偿后传感器的输出值

    Table  4.   The output value of the sensor after compensation

    标定压力/kPa不同标定温度下的输出值/kPa
    20 ℃30 ℃40 ℃50 ℃60 ℃70 ℃80 ℃
    100100.38 99.75100.26100.20100.25100.37100.03
    150150.34149.80149.99150.08149.84149.94150.11
    200200.07199.82200.30200.10199.80199.84199.87
    250250.01249.75250.19250.00249.86250.08249.86
    300299.99299.99300.06299.85299.83299.85300.19
    350350.11349.84349.90350.01349.80349.76350.06
    400400.04400.09399.79399.91399.90399.87400.14
    450449.69449.73449.70449.80449.97449.88449.95
    500499.94499.71499.65499.78499.87499.76499.88
    550549.64550.10549.71549.86550.17549.76550.20
    600599.83599.79599.69599.85600.35599.97599.73
    下载: 导出CSV

    表  5  补偿后各标定温度下传感器输出误差比较

    Table  5.   Comparison of output errors of the sensor at each calibration temperature after compensation

    标定温度/℃最大误差/kPa标准差/kPa标定温度/℃最大误差/kPa标准差/kPa
    20 0.380.2360 0.350.20
    30−0.290.1470 0.370.18
    40−0.350.2480−0.270.15
    50−0.220.14
    下载: 导出CSV

    表  6  起爆后各时段温度压力值

    Table  6.   Temperature and pressure values at various times after explosion

    相对时间/s介质温度/℃环境温度/℃实测压力/kPa补偿后压力/kPa误差/kPa
    0 21.221.2 89.4 90.3 0.9
    20 54.926.1458.8460.5 1.7
    25 63.229.4494.6496.8 2.2
    40112.838.5446.0448.9 2.9
    60126.153.8393.2398.5 5.3
    80125.973.4362.8375.112.3
    100120.574.6342.8355.612.8
    120116.269.7330.4338.9 8.5
    下载: 导出CSV
  • [1] 李芝绒, 翟红波, 闫潇敏, 等. 一种温压内爆炸准静态压力测量方法研究 [J]. 传感器技术学报, 2016, 29(2): 208–212. DOI: 10.3969/j.issn.1004-1699.2016.02.010.

    LI Z R, ZHAI H B, YAN X M, et al. Test method research for the quasi-static pressure on inside-explosive [J]. Chinese Journal of Sensors and Actuators, 2016, 29(2): 208–212. DOI: 10.3969/j.issn.1004-1699.2016.02.010.
    [2] 刘文祥, 张德志, 钟方平, 等. 球形爆炸容器内炸药爆炸形成的准静态气体压力 [J]. 爆炸与冲击, 2018, 38(5): 1045–1050. DOI: 10.11883/bzycj-2017-0056.

    LIU W X, ZHANG D Z, ZHONG F P, et al. Quasi-static gas pressure generated by explosive charge blasting in a spherical explosion containment vessel [J]. Explosion and Shock Waves, 2018, 38(5): 1045–1050. DOI: 10.11883/bzycj-2017-0056.
    [3] 张玉磊, 苏健军, 李芝绒, 等. TNT内爆炸准静态压力特性 [J]. 爆炸与冲击, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.

    ZHANG Y L, SU J J, LI Z R, et al. Quasi-static pressure characteristic of TNT’s internal explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.
    [4] 王冰冰, 李淮江. 基于三次样条插值的硅压阻式压力传感器的温度补偿 [J]. 传感技术学报, 2015, 28(7): 1003–1007. DOI: 10.3969/j.issn.1004-1699.2015.07.011.

    WANG B B, LI H J. Temperature compensation of piezo-resistive pressure sensor based on the interpolation of third order splines [J]. Chinese Journal of Sensors and Actuators, 2015, 28(7): 1003–1007. DOI: 10.3969/j.issn.1004-1699.2015.07.011.
    [5] 杨遂军, 康国炼, 叶树亮. 基于最小二乘支持向量机的硅压阻式传感器温度补偿 [J]. 传感技术学报, 2016, 29(4): 500–505. DOI: 10.3969/j.issn.1004-1699.2016.04.007.

    YANG S J, KANG G L, YE S L. Temperature compensation of silicon piezo-resistive sensor based on least square-support vector machine [J]. Chinese Journal of Sensors and Actuators, 2016, 29(4): 500–505. DOI: 10.3969/j.issn.1004-1699.2016.04.007.
    [6] 李冀, 胡国清, 周永宏, 等. 一种压阻式压力传感器的温度补偿方法 [J]. 仪表技术与传感器, 2018(6): 1–5. DOI: 10.3969/j.issn.1002-1841.2018.06.001.

    LI J, HU G Q, ZHOU Y H, et al. Temperature compensation method for piezo-resistive pressure sensor [J]. Instrument Technique and Sensor, 2018(6): 1–5. DOI: 10.3969/j.issn.1002-1841.2018.06.001.
    [7] 龙军, 关威, 汪旭东, 等. 基于岭回归的压力传感器高精度测量模型研究 [J]. 传感技术学报, 2017, 30(3): 391–396. DOI: 10.3969/j.issn.1004-1699.2017.03.010.

    LONG J, GUAN W, WANG X D, et al. Study on high accuracy measurement model of pressure sensor based on ridge regression [J]. Chinese Journal of Sensors and Actuators, 2017, 30(3): 391–396. DOI: 10.3969/j.issn.1004-1699.2017.03.010.
    [8] 孙艳梅, 苗凤娟, 陶佰睿. 基于PSO的BP神经网络在压力传感器温度补偿中的应用 [J]. 传感技术学报, 2014, 27(3): 342–346. DOI: 10.3969/j.issn.1004-1699.2014.03.013.

    SUN Y M, MIAO F J, TAO B R. The application of BP neural network based on PSO algorithm to pressure sensor temperature compensation [J]. Chinese Journal of Sensors and Actuators, 2014, 27(3): 342–346. DOI: 10.3969/j.issn.1004-1699.2014.03.013.
    [9] DING J C, ZHANG J, HUANG W Q, et al. Laser gyro temperature compensation using modified RBFNN [J]. Sensors, 2014, 14(10): 18711–18727. DOI: 10.3390/s141018711.
    [10] 梁伟峰, 汪晓东, 梁萍儿. 基于最小二乘支持向量机的压力传感器温度补偿 [J]. 仪器仪表学报, 2007, 28(12): 2235–2238. DOI: 10.3321/j.issn:0254-3087.2007.12.024.

    LIANG W F, WANG X D, LIANG P E. Pressure sensor temperature compensation based on least squares support vector-machine [J]. Chinese Journal of Scientific Instrument, 2007, 28(12): 2235–2238. DOI: 10.3321/j.issn:0254-3087.2007.12.024.
    [11] 杨松, 李开林, 胡国清, 等. 基于FOA优化SOM-RBF的压力传感器温度补偿研究 [J]. 仪表技术与传感器, 2018(2): 19–23. DOI: 10.3969/j.issn.1002-1841.2018.02.006.

    YANG S, LI K L, HU G Q, et al. Temperature compensation research of pressure sensor based on FOA improved SOM-RBF [J]. Instrument Technique and Sensor, 2018(2): 19–23. DOI: 10.3969/j.issn.1002-1841.2018.02.006.
    [12] 孙艳梅, 刘树东, 苗凤娟, 等. 基于遗传算法的小波神经网络温度补偿模型 [J]. 传感技术学报, 2012, 25(1): 77–81. DOI: 10.3969/j.issn.1004-1699.2012.01.016.

    SUN Y M, LIU S D, MIAO F J, et al. Temperature compensation model based on the wavelet neural network with genetic algorithm [J]. Chinese Journal of Sensors and Actuators, 2012, 25(1): 77–81. DOI: 10.3969/j.issn.1004-1699.2012.01.016.
    [13] 孙亚飞, 顾芳, 黄亚磊, 等. 基于GA-WNN温度补偿的红外CO2气体传感器系统研究 [J]. 传感技术学报, 2018, 31(10): 1613–1620. DOI: 10.3969/j.issn.1004-1699.2018.010.026.

    SUN Y F, GU F, HUANG Y L, et al. Research on infrared CO2 gas sensor system with temperature compensation based on GA-WNN [J]. Chinese Journal of Sensors and Actuators, 2018, 31(10): 1613–1620. DOI: 10.3969/j.issn.1004-1699.2018.010.026.
    [14] KUMAR S S, PANT B D. Erratum to: Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review [J]. Microsystem Technologies, 2014, 20(7): 2303–2303. DOI: 10.1007/s00542-014-2289-2.
    [15] 宋志章, 孙艳梅, 李会, 等. 基于模糊神经网络的压力传感器零点漂移补偿法 [J]. 仪表技术与传感器, 2014(3): 11–13. DOI: 10.3969/j.issn.1002-1841.2014.03.004.

    SONG Z Z, SUN Y M, LI H, et al. Zero drift compensation method of pressure sensor based on fuzzy neural network [J]. Instrument Technique and Sensor, 2014(3): 11–13. DOI: 10.3969/j.issn.1002-1841.2014.03.004.
    [16] LI P, LIU M, ZHANG X, et al. Novel wavelet neural network algorithm for continuous and noninvasive dynamic estimation of blood pressure from photoplethysmography [J]. Science China (Information Sciences), 2016, 59(4): 1–10. DOI: CNKI:SUN:JFXG.0.2016-04-009.
    [17] ZHANG J H, WU Y S, LIU Q Q, et al. Research on high-precision, low cost piezoresistive MEMS array pressure transmitters based on genetic wavelet neural networks for meteorological measurement [J]. Micromachines, 2015, 6(5): 554–573. DOI: 10.3390/mi6050554.
    [18] 侯霞. 小波神经网络若干关键问题研究[D]. 南京: 南京航空航天大学, 2006: 8-9.
    [19] 刘宇鹏. 基于预测控制的盘件气体冲击射流换热过程的优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 24-25.
    [20] 包子阳. 智能优化算法及其MATLAB实例[M]. 北京: 电子工业出版社, 2018: 13−17.
    [21] 钱华明, 王雯升. 遗传小波神经网络及在电机故障诊断中的应用 [J]. 电子测量与仪器学报, 2009, 23(3): 81–86. DOI: CNKI: SUN:DZIY.0.2009-03-019.

    QIAN H M, WANG W S. Improved wavelet neural network based on genetic algorithm and its application in fault diagnosis of motor [J]. Journal of Electronic Measurement and Instrument, 2009, 23(3): 81–86. DOI: CNKI: SUN:DZIY.0.2009-03-019.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  5763
  • HTML全文浏览量:  1257
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-12
  • 修回日期:  2019-08-17
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回