掺氢比对甲烷-氧气爆轰特性的影响

倪靖 潘剑锋 姜超 陈祥 张顺

倪靖, 潘剑锋, 姜超, 陈祥, 张顺. 掺氢比对甲烷-氧气爆轰特性的影响[J]. 爆炸与冲击, 2020, 40(4): 042102. doi: 10.11883/bzycj-2019-0237
引用本文: 倪靖, 潘剑锋, 姜超, 陈祥, 张顺. 掺氢比对甲烷-氧气爆轰特性的影响[J]. 爆炸与冲击, 2020, 40(4): 042102. doi: 10.11883/bzycj-2019-0237
NI Jing, PAN Jianfeng, JIANG Chao, CHEN Xiang, ZHANG Shun. Effects of hydrogen-blending ratio on detonation characteristics of premixed methane-oxygen gas[J]. Explosion And Shock Waves, 2020, 40(4): 042102. doi: 10.11883/bzycj-2019-0237
Citation: NI Jing, PAN Jianfeng, JIANG Chao, CHEN Xiang, ZHANG Shun. Effects of hydrogen-blending ratio on detonation characteristics of premixed methane-oxygen gas[J]. Explosion And Shock Waves, 2020, 40(4): 042102. doi: 10.11883/bzycj-2019-0237

掺氢比对甲烷-氧气爆轰特性的影响

doi: 10.11883/bzycj-2019-0237
基金项目: 国家自然科学基金(91641113)
详细信息
    作者简介:

    倪 靖(1996- ),男,硕士研究生,a1437407300@163.com

    通讯作者:

    潘剑锋(1978- ),男,博士,教授,mike@ujs.edu.cn

  • 中图分类号: O382

Effects of hydrogen-blending ratio on detonation characteristics of premixed methane-oxygen gas

  • 摘要: 含氢多组分燃料由于其优良的燃烧特性逐渐成为研究关注的重点。为了对掺氢燃料的爆轰特性作进一步的研究,设计了长3 000 mm、管径30 mm的圆柱形半封闭燃烧室,对不同初压下的CH4-2O2、6CH4-H2-12.5O2、3CH4-H2-6.5O2(掺氢比分别为0%、5.1%、9.5%)3种预混合气的爆轰特性进行了实验研究,并采用烟熏膜、离子探针和压力传感器分别探测胞格结构、火焰位置和内部压力。结果表明,甲烷/氧气掺氢后可以有效提高爆轰波的传播速度,且掺氢浓度越高,传播速度越快;同时,氢气的掺入可减少管道出口处的速度亏损并在初始压力较低时加速火焰和激波的耦合,降低胞格尺寸,提高爆轰敏感性。
  • 图  1  实验系统

    Figure  1.  Experimental system

    图  2  点火系统等效R-L-C电路[17]

    Figure  2.  An equivalent R-L-C circuit of the ignition system[17]

    图  3  CH4-2O2激波与火焰的相互作用过程

    Figure  3.  Time evolution of shock-flame interaction for CH4-2O2

    图  4  6CH4-H2-12.5O2激波与火焰的相互作用过程

    Figure  4.  Time evolution of shock-flame interaction for 6CH4-H2-12.5O2

    图  5  3CH4-H2-6.5O2激波与火焰的相互作用过程

    Figure  5.  Time evolution of shock-flame interaction for 3CH4-H2-6.5O2

    图  6  不同初压下管道中各点火焰速度与CJ速度的比值

    Figure  6.  Ratios of flame velocity to CJ velocity at each point in the pipeline under different initial pressures

    图  7  不同掺氢比下爆轰波稳定传播平均速度随初压的变化

    Figure  7.  Average velocity of steady propagation of detonation wave varying with initial pressure at different hydrogen-blending ratios

    图  8  不同掺氢比、不同初始压力下管道中各点压力峰值的分布情况

    Figure  8.  Distribution of the pressure peak at each point in the pipeline under different hydrogen-blending ratios and different initial pressures

    图  9  初始压力为20.0 kPa时3种气体的胞格结构

    Figure  9.  Cellular structures of three gases at the initial pressure of 20.0 kPa

    图  10  初始压力为30.0 kPa时3种气体的胞格结构

    Figure  10.  Cellular structures of three gases at the initial pressure of 30.0 kPa

    图  11  初始压力为40.0 kPa时3种气体的胞格结构

    Figure  11.  Cellular structures of three gases at the initial pressure of 40.0 kPa

    图  12  不同掺氢比下胞格尺寸随初始压力的变化

    Figure  12.  Change of cell size with initial pressure at different hydrogen-blending ratios

    表  1  实验气体组分

    Table  1.   Experimental gas compositions

    气体编号气体配比氢气摩尔分数/%
    #1CH4-2O20
    #26CH4-H2-12.5O25.1
    #33CH4-H2-6.5O29.5
    下载: 导出CSV

    表  2  爆轰胞格尺寸$\lambda $与初始压力p0之间的拟合关系参数

    Table  2.   Parameters for fitting relationship between detonation cell size λ and initial pressure p0

    掺氢比/%C/mmb
    0688.229 571.149 81
    5.1515.502 931.096 92
    9.5977.119 241.347 64
    下载: 导出CSV
  • [1] ZHOU J H, CHEUNG C S, LEUNG C W. Combustion, performance and emissions of a diesel engine with H2, CH4, and H2-CH4, addition [J]. International Journal of Hydrogen Energy, 2014, 39(9): 4611–4621. DOI: 10.1016/j.ijhydene.2013.12.194.
    [2] BAUER C G, FOREST T W. Effect of hydrogen addition on the performance of methane-fueled vehicles: Part I: effect on S. I. engine performance [J]. International Journal of Hydrogen Energy, 2001, 26(1): 55–70. DOI: 10.1016/S0360-3199(00)00067-7.
    [3] JEONGSEOG O, DONGSOON N, CHANGBOK K. The effect of hydrogen addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace [J]. Energy, 2013, 62(Complete): 362–369. DOI: 10.1016/j.energy.2013.09.049.
    [4] 李勇, 马凡华, 刘海全, 等. HCNG发动机掺氢比选择试验研究 [J]. 车用发动机, 2007(2): 15–18. DOI: 10.3969/j.issn.1001-2222.2007.02.004.

    LI Y, MA F H, LIU H Q, et al. A test research on choosing a suitable hydrogen-CNG ratio for HCNG engine [J]. Vehicle Engine, 2007(2): 15–18. DOI: 10.3969/j.issn.1001-2222.2007.02.004.
    [5] 牛仁旭, 张岳韬, 于秀敏, 等. 喷氢时刻对缸内直喷掺氢汽油机燃烧及排放的影响 [J]. 内燃机学报, 2017, 35(1): 32–37. DOI: 10.16236/j.cnki.nrjxb.201701005.

    NIU R X, ZHANG Y T, YU X M, et al. Effect of hydrogen injection timing on combustion and emission characteristics in a hydrogen-blended gasoline engine [J]. Transactions of CSICE, 2017, 35(1): 32–37. DOI: 10.16236/j.cnki.nrjxb.201701005.
    [6] 范宝伟. 天然气转子发动机缸内气流运动和燃烧过程的实验和数值模拟研究[D]. 镇江: 江苏大学, 2015: 35−40.
    [7] 刘海全, 马凡华, 王宇, 等. 不同掺氢比天然气发动机的燃烧排放特性 [J]. 农业机械学报, 2009, 39(8): 1–13.

    LIU H Q, MA F H, WANG Y, et al. Combustion and emission characteristics of an engine fueled with hydrogen enriched nature gas of various blend ratios [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 39(8): 1–13.
    [8] 殷勇, 马凡华, 饶如麟. 天然气掺氢发动机实验研究[C]//APC联合学术年会论文集. 江苏丹阳, 2006: 176−185.
    [9] 尉庆国, 白小磊, 张红光. 甲烷-氢气-空气预混合气燃烧特性研究 [J]. 车辆与动力技术, 2011(4): 12–17. DOI: 10.3969/j.issn.1009-4687.2011.04.004.

    WEI Q G, BAI X L, ZHANG H G. Combustion characteristics research on methane-hydrogen-air pre-mixture [J]. Vehicle and Power Technology, 2011(4): 12–17. DOI: 10.3969/j.issn.1009-4687.2011.04.004.
    [10] 阳旭峰, 郑凯, 万少杰. 障碍物对甲烷/氢气爆炸特性的影响 [J]. 爆炸与冲击, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.

    YANG X F, ZHENG K, WAN S J. Effect of obstacles on explosion characteristics of methane/hydrogen [J]. Explosion and Shock Waves, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.
    [11] CHAUMEIXA N, PICHONA S, LAFOSSEA F, et al. Role of chemical kinetics on the detonation properties of hydrogen/natural gas/air mixtures [J]. Hydrogen Energy, 2007, 32(13): 2216–2226. DOI: 10.1016/j.ijhydene.2007.04.008.
    [12] RUDY W, ZBIKOWSKI M, TEODORCZYK A. Detonations in hydrogen-methane-air mixtures in semi confined flat channels [J]. Energy, 2016, 116(3): 1479–1483. DOI: 10.1016/j.energy.2016.06.001.
    [13] POROWSKI R, TEODORCZYK A. Experimental study on DDT for hydrogen-methane-air mixtures in tube with obstacles [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 374–379. DOI: 10.1016/j.jlp.2012.06.004.
    [14] 白桥栋, 翁春生. 进气掺氢对爆轰波参数影响的试验研究 [J]. 推进技术, 2015, 36(12): 1915–1920. DOI: 10.13675/j.cnki.tjjs.2015.12.023.

    BAI Q D, WENG C S. Experimental study of effects of hydrogen addition on detonation wave parameters [J]. Journal of Propulsion Technology, 2015, 36(12): 1915–1920. DOI: 10.13675/j.cnki.tjjs.2015.12.023.
    [15] ZHANG B, WANG C, SHEN X B, et al. Velocity fluctuation analysis near detonation propagation limits for stoichiometric methane-hydrogen-oxygen mixture [J]. International Journal of Hydrogen Energy, 2016, 41(39): 17750–17759. DOI: 10.1016/j.ijhydene.2016.08.017.
    [16] 韩启祥, 王家骅, 王维来. 测量爆燃到爆震转捩距离的离子探针技术研究 [J]. 航空动力学报, 2003, 17(1): 97–100. DOI: 10.3969/j.issn.1000-8055.2003.01.017.

    HAN Q X, WANG J H, WANG W L. Investigation of the ion-probe technology for measuring the DDT distance [J]. Journal of Aerospace Power, 2003, 17(1): 97–100. DOI: 10.3969/j.issn.1000-8055.2003.01.017.
    [17] 张博, 白春华. 气相爆轰动力学[M]. 北京: 科学出版社, 2012: 104−105.
    [18] KNYSTAUTAS R, LEE J H. On the effective energy for direct initiation of gaseous detonation [J]. Combustion and Flame, 1976, 27: 221–228. DOI: 10.1016/0010-2180(76)90025-0.
    [19] KANESHIGE M, SHEPHERD J E. Detonation database [DB/OL]. (2005-01-25)[2015-08-28]. http://shepherd.caltech.edu/detn_db/html/db.html.
    [20] 赵焕娟, LEE J H S, 张英华, 等. 边界条件对甲烷预混气爆轰特性的影响 [J]. 爆炸与冲击, 2017, 37(2): 201–207. DOI: 10.11883/1001-1455(2017)02-0201-07.

    ZHAO H J, LEE J H S, ZHANG Y H, et al. Effects of boundary conditions on premixed CH4+2O2 detonation characteristics [J]. Explosion and Shock Waves, 2017, 37(2): 201–207. DOI: 10.11883/1001-1455(2017)02-0201-07.
    [21] 张宝平, 张庆明. 爆轰物理学[M]. 北京: 兵器工业出版社, 2001: 99−100.
    [22] 郝志坚, 王琪. 炸药理论[M]. 北京: 北京理工大学出版社, 2015: 85−90.
    [23] GAO Y, NG H D, LEE J H S. Minimum tube diameters for steady propagation of gaseous detonations [J]. Shock Waves, 2014, 24(4): 447–454. DOI: 10.1007/s00193-014-0505-8.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  6169
  • HTML全文浏览量:  2463
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-13
  • 修回日期:  2019-09-30
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回