爆炸驱动典型活性材料能量释放特性研究

杜宁 张先锋 熊玮 杨莹 黄炳瑜 陈海华

杜宁, 张先锋, 熊玮, 杨莹, 黄炳瑜, 陈海华. 爆炸驱动典型活性材料能量释放特性研究[J]. 爆炸与冲击, 2020, 40(4): 042301. doi: 10.11883/bzycj-2019-0239
引用本文: 杜宁, 张先锋, 熊玮, 杨莹, 黄炳瑜, 陈海华. 爆炸驱动典型活性材料能量释放特性研究[J]. 爆炸与冲击, 2020, 40(4): 042301. doi: 10.11883/bzycj-2019-0239
DU Ning, ZHANG Xianfeng, XIONG Wei, YANG Ying, HUANG Bingyu, CHEN Haihua. Energy-release characteristics of typical reactive materials under explosive loading[J]. Explosion And Shock Waves, 2020, 40(4): 042301. doi: 10.11883/bzycj-2019-0239
Citation: DU Ning, ZHANG Xianfeng, XIONG Wei, YANG Ying, HUANG Bingyu, CHEN Haihua. Energy-release characteristics of typical reactive materials under explosive loading[J]. Explosion And Shock Waves, 2020, 40(4): 042301. doi: 10.11883/bzycj-2019-0239

爆炸驱动典型活性材料能量释放特性研究

doi: 10.11883/bzycj-2019-0239
基金项目: 国家自然科学基金委员会与中国工程物理研究院联合基金(U1730101);江苏省研究生科研创新计划(KYCX19_0321,KYCX19_0335)
详细信息
    作者简介:

    杜 宁(1990- ),男,博士研究生,duning521519@126.com

    通讯作者:

    张先锋(1978- ),男,博士,教授,lynx@njust.edu.cn

  • 中图分类号: O381

Energy-release characteristics of typical reactive materials under explosive loading

  • 摘要: 为了研究活性材料爆炸驱动反应特性,基于粉末压制成型工艺,制备了Al/PTFE、Al/Ni两种典型的活性材料及Al2O3/PTFE、Al2O3/PTFE/W惰性材料。通过爆炸驱动试验,并结合高速摄影、远红外热像仪以及峰值超压测试技术,分析了不同活性材料壳体装药爆炸火球、温度场分布及空气冲击波峰值超压等特性。同时,在炸药爆炸空气冲击波峰值超压经验计算模型中考虑了活性材料释放的化学能,分析了反应释放能量对空气冲击波的影响规律。结果表明:活性材料在爆炸驱动过程中经历了强加载条件下反应、产生碎片并向四周飞散、撞击钢板及后续反应等阶段。活性材料对炸药爆炸产生的空气冲击波具有强化作用,爆炸加载瞬间材料仅发生了部分化学反应。
  • 图  1  活性材料制备工艺流程

    Figure  1.  Preparation route of energetic structural materials

    图  2  Al/PTFE活性材料烧结工艺曲线

    Figure  2.  Sinter curve of Al/PTFE energetic structural materials

    图  3  粉末压制工艺制备Al/PTFE、Al/Ni材料

    Figure  3.  Al/PTFE and Al/Ni materials by powder compaction

    图  4  约束装药示意图

    Figure  4.  Schematic diagram of confined charge

    图  5  活性材料爆炸驱动装置

    Figure  5.  Explosive loading device of energetic structural materials shells

    图  6  试验布局

    Figure  6.  Experimental layout

    图  7  不同材料爆炸驱动下火球成形和演变情况

    Figure  7.  Morphology and evolution of the fireballs for the four charges with different materials

    图  8  不同材料特定时刻热像图

    Figure  8.  Thermal images of different materials at different times

    图  9  不同材料爆炸驱动下的热像图随时间的变化规律

    Figure  9.  Thermal images of different materials at different times under explosive loading

    图  10  辐射面积随时间变化曲线

    Figure  10.  Radiation area varying with time

    图  11  高温区辐射面积随时间变化曲线

    Figure  11.  Radiation area of high temperature region varying with time

    图  12  不同材料超压随时间的变化曲线

    Figure  12.  Overpressure-time curves of different materials

    图  13  不同材料碎片撞击钢板的试验结果

    Figure  13.  Experimental results of fragments with ·different materials impacting steel targets

    表  1  材料性能参数

    Table  1.   The parameters of materials

    材料质量比密实度/%Qm/(kJ·g−1)σ/MPaρ/(g·cm−3)m/g
    Al/PTFE26.5∶73.599.58.8720.432.27 87.78
    Al/Ni23.9∶76.168.91.3827.703.97157.01
    Al2O3/PTFE13.6∶86.496.40 16.662.20 87.45
    Al2O3/PTFE/W20∶36.9∶43.167.90 18.473.91154.72
    下载: 导出CSV

    表  2  压电传感器测试爆炸参数

    Table  2.   Test data by piezoelectric sensors

    材料测试编号m/gM/gQt/kJΔ p/kPay/%
    Al2O3/PTFE2 87.4544.0 0 30.2 0
    Al2O3/PTFE/W3154.7244.0 0 32.8 0
    Al/PTFE4 87.7844.0778.643.317.48
    下载: 导出CSV

    表  3  不同材料在爆炸驱动下反应度计算结果

    Table  3.   Calculation results of reactive efficiency of different materials under explosion loading

    材料编号m/gM/gQt/kJΔ p/kPay/%
    Alumina[12]Al2O3 8.915.53 0 91.5 0
    Mechanically alloyed powder[12]Al·Mg (NJIT)-111.306.12181.5137.521.60
    Al·Mg (NJIT)-2 9.955.71163.2139.926.32
    Flake aluminum[12]Al (flake) 9.705.57150.1135.226.85
    Spherical aluminum powder (repeats) [12]Al H-2-1 9.955.78167.2120.617.39
    Al H-2-210.836.02167.6123.917.98
    Al H-2-310.025.83168.6125.419.06
    Atomized alloy powder[12]Al·Mg(Valimet) 9.625.73176.4130.620.56
    下载: 导出CSV
  • [1] 门建兵, 蒋建伟, 帅俊峰, 等. 复合反应破片爆炸成型与毁伤实验研究 [J]. 北京理工大学学报, 2010, 30(10): 1143–1146. DOI: 10.1002/9783527628650.ch2.

    MEM J B, JIANG J W, SHUAI J F, et al. Experimental research on formation and terminal effect of explosively formed compound energetic structural fragments [J]. Transactions of Beijing Institute of Technology, 2010, 30(10): 1143–1146. DOI: 10.1002/9783527628650.ch2.
    [2] 张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.

    ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.
    [3] 陈鹏, 卢芳云, 覃金贵, 等. 含钨活性材料动态压缩力学性能 [J]. 兵工学报, 2015, 36(10): 1861–1866. DOI: 10.3969/j.issn.1000-1093.2015.10.006.

    CHENG P, LU F Y, QIN J G, et al. Dynamic compressive mechanical properties of tungstenic reactive material [J]. Acta Armamentarii, 2015, 36(10): 1861–1866. DOI: 10.3969/j.issn.1000-1093.2015.10.006.
    [4] VARAS J M, PHILIPPENS M, MEIJIER S R, et al. Physics of IED blast shock tube simulations for mTBI research [J]. Frontiers in Neurology, 2011, 2(58): 1–14. DOI: 10.3389/fneur.2011.00058.
    [5] ZHANG F, WILSON W H. The effect of charge reactive metal cases on air blast [J]. American Institute of Physics Conference Proceedings, 2009, 1195(1): 149–152. DOI: 10.1063/1.3295089.
    [6] ARNOD W, ROTTENKOLBER E. Fragment mass distribution of metal cased explosive charges [J]. International Journal of Impact Engineering, 2008, 35(12): 1393–1398. DOI: 10.1016/j.ijimpeng.2008.07.049.
    [7] AMES R. Energy release characteristics of impact-initiated energetic materials [J]. MRS Proceedings, 2005, 896(3): 321–333. DOI: 10.1557/PROC-0896-H03-08.
    [8] KELLY S C, THADHANI N N. Shock compression response of highly reactive Ni+Al multilayered thin foils [J]. Journal of Applied Physics, 2016, 119(9): 095903. DOI: 10.1063/1.4942931.
    [9] CLEMENSON M. Enhancing reactivity of aluminum-based structural energetic materials [D]. Illinois: University of Illinois at Urbana-Champaign, 2015: 52−58.
    [10] FABIGNON Y, TRUBERT J F, LAMBERT D, et al. Combustion of aluminum particles in solid rocket motors [C] // 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, Alabama, USA: American Institute for Aeronautics and Astronautics, 2003: 1. DOI: 10.2514/6.2003-4807.
    [11] ORTH L, KRIER H. Shock physics for nonideal detonations of metallized energetic explosives [J]. Symposium on Combustion, 1998, 27(2): 2327–2333. DOI: 10.1016/S0082-0784(98)80083-0.
    [12] GUADARRAMA J, DREIZIN E L, GLUMAC N. Reactive liners prepared using powders of aluminum and aluminum-magnesium alloys [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(4): 605–611. DOI: 10.1002/prep.201500230.
    [13] FROST D L, GOROSHIN S, JANIDLO S, et al. Fragmentation of reactive metallic particles during impact with a plate [J]. American Institute of Physics Conference Proceedings, 2004, 706(1): 451–454. DOI: 10.1063/1.1780275.
    [14] AMES R. Vented chamber calorimetry for impact-initiated energetic materials [C] // 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA: American Institute for Aeronautics and Astronautics, 2013: 10−13. DOI: 10.2514/6.2005-279.
    [15] XIONG W, ZHANG X, WU Y, et al. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540–549. DOI: 10.1016/j.jallcom.2015.07.004.
    [16] WEI C T, VITALI E, JIANG F, et al. Quasi-static and dynamic response of explosively consolidated metal-aluminum powder mixtures [J]. Acta Materialia, 2012, 60(3): 1418–1432. DOI: 10.1016/j.actamat.2011.10.027.
    [17] ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 2129–1156. DOI: 10.1063/1.4793281.
    [18] 饶国宁. 爆炸能量输出特性及爆炸波与目标作用的研究[D]. 南京: 南京理工大学, 2007: 1−20.
    [19] KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. 2nd ed. New York: Springer-Verlag, 1985: 35−49.
    [20] 任会兰, 李尉, 刘晓俊, 等. 钨颗粒增强铝/聚四氟乙烯材料的冲击反应特性 [J]. 兵工学报, 2016, 37(5): 872–878. DOI: 10.3969/j.issn.1000-1093.2016.05.014.

    REN H L, LI W, LIU X J, et al. Reaction behaviors of Al/PTFE materials enhanced by W particles [J]. Acta Armamentarii, 2016, 37(5): 872–878. DOI: 10.3969/j.issn.1000-1093.2016.05.014.
    [21] 张先锋, 李向东, 沈培辉, 等. 终点效应学[M]. 北京: 北京理工大学出版社, 2017: 67−72.
    [22] 张守中. 爆炸与冲击动力学[M]. 北京: 兵器工业出版社, 1993: 369−375.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  5496
  • HTML全文浏览量:  2548
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 修回日期:  2019-07-07
  • 网络出版日期:  2020-02-25
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回