Numerical simulation of Whipple shield hypervelocity impact based on optimal transportation meshfree method
-
摘要: Whipple屏是航天器防护空间碎片撞击的常用结构。现有的方法在模拟Whipple屏超高速撞击时均存在问题,本文采用最优运输无网格法(optimal transportation meshfree, OTM)对其进行模拟。OTM法是一种拉格朗日无网格法,其特点是运用最优运输理论对时间进行离散,采用带有位置信息的节点和带有材料信息的物质点对空间进行离散,利用局部最大熵(local maximum entropy, LME)方法得到插值函数,基于能量释放率来判断材料是否失效。本文首先用OTM法对铝球超高速撞击单层铝板进行模拟,通过与实验结果和各类SPH法的计算结果对比,验证了OTM法在超高速撞击问题上的适用性;然后采用OTM法对Whipple屏超高速撞击进行模拟,将OTM法预测的缓冲墙与后墙的损伤情况与实验结果进行对比,结果显示OTM法不仅能准确预测缓冲墙的弹孔直径,也能很好地模拟出后墙的剥落、穿透情况和碎片云的形态。Abstract: The Whipple shield is often used for protecting spacecraftfrom the impact of space debris. There are a lot of defects in the general numerical simulation methods for hypervelocity impact problems, thus this paper used OTM (optimal transportation meshfree)method to simulate the impacting process. OTM is a Lagrangian meshless method which ischaracterized by applying optimal transportation theory to discretize time, using a set of nodal-points with position information and a set of material-points with material information to discretize space,utilizing LME (local maximum entropy) approximation schemes to get interpolation functions, and simulating the failure of materials by material-point failure method related toenergy release rate. In this paper, OTM method was firstly used to simulate the impact of an aluminum ball on a single aluminum plate. The applicability of OTM method in hypervelocity impact was verified by comparing with the test results and the calculation results of other SPH methods. Then we used OTM method to simulate the hypervelocity impact of Whipple shield. The damage of the outer bumper and the spacecraft wall predicted by the OTM method was compared with the experimental results. It could be seen that the OTM method could not only predict the diameter of the bullet hole of the outer bumper, but also accurately simulate the spalling and penetration of the spacecraft wall, and the shape of the debris cloud.
-
Key words:
- optimal transportation meshfree /
- hypervelocity impact /
- whipple shield /
- damage
-
表 1 LY12材料参数
Table 1. Material parameters of LY12
密度/(kg∙m−3) 弹性模量/GPa 泊松比 比热容/(J∙kg−1∙K−1) 2 700 68.9 0.33 896 表 2 J2黏塑性模型参数
Table 2. Parameters of J2 viscoplasticity model
σ0/MPa ${\varepsilon }_{0}^{\rm{p}}$ ${\dot{\varepsilon } }_{0}^{\rm{p} }$ n m q Tm0/K $ a $ $ {\gamma }_{0} $ 276 $ 5\times {10}^{-4} $ 1 000 0.075 0.08 0.5 925 1.5 1.97 表 3 铝球超高速撞击铝板结果对比
Table 3. Comparison of high-velocity impact results between aluminum projectile and plate
方法 d/mm ε/% l/mm w/mm l/w Δ/% Hiermaier实验 27.5 − − − 1.39 − Hiermaier模拟 35.0 27.3 − − 1.11 − SPH法 31.6 14.9 102.8 75.5 1.36 2.2 ASPH法 28.9 5.1 105.1 86.1 1.22 12.2 拟流体SPH法 29.4 6.9 105.7 81.4 1.30 6.5 OTM法 26.2 4.7 104.2 76.7 1.36 2.2 表 4 实验参数设置
Table 4. Parameters in experiments
实验 弹丸直径/mm 弹丸质量/g 缓冲墙厚度/mm 后墙厚度/mm 撞击速度/(km·s−1) 撞击角/(°) 04-0090 5.00 0.1797 1.92 1.94 5.29 0 04-0092 5.02 0.1826 1.94 1.90 5.52 0 04-0079 5.00 0.1810 1.94 1.92 6.08 0 04-0080 5.00 0.1811 1.92 1.90 6.15 0 04-0084 4.04 0.0972 1.92 1.90 5.95 45 04-0083 4.02 0.0960 1.92 1.94 6.02 45 04-0075 4.02 0.0958 1.92 1.90 4.47 45 04-0077 4.00 0.0940 1.92 1.94 4.74 45 表 5 缓冲墙弹孔尺寸对比
Table 5. Bullethole size comparison of outer bumper
实验 撞击速度/(km∙s−1) 实验缓冲墙弹孔尺寸/mm 仿真缓冲墙弹孔尺寸/mm 相对误差 04-0090 5.29 11.5 10.5 8.69% 04-0092 5.52 11.7 10.9 6.84% 04-0079 6.08 12.4 11.2 9.68% 04-0080 6.15 12.6 11.8 6.35% 04-0075 4.47 10.6×8.5 10.9×8.99 2.83%×5.76% 04-0077 4.74 10.6×8.7 11.2×9.39 5.66%×7.93% 04-0084 5.95 11.6×10.2 12.3×10.1 6.03%×0.98% 04-0083 6.02 11.6×10.3 12.1×9.75 4.31%×5.34% 表 6 后墙损伤情况对比
Table 6. Damagecomparison of spacecraft wall
实验 撞击速度/(km∙s−1) 实验后墙损伤情况 仿真后墙损伤情况 04-0090 5.29 3处剥落,无穿透 无剥落,2处穿透 04-0092 5.52 2处剥落,无穿透 5处剥落,2处穿透 04-0079 6.08 无剥落,无穿透 无剥落,无穿透 04-0080 6.15 无剥落,无穿透 无剥落,无穿透 04-0075 4.47 无剥落,2处穿透 无剥落,无穿透 04-0077 4.74 无剥落,无穿透 无剥落,无穿透 04-0084 5.95 1处剥落,1处穿透 无剥落,无穿透 04-0083 6.02 1处剥落,1处穿透 1处剥落,无穿透 -
[1] CHRISTIANSEN E L, KERR J H. Ballistic limit equations for spacecraft shielding [J]. International Journal of ImpactEngineering, 2001, 26(1−10): 93–104. DOI: 10.1016/S0734-743X(01)00070-7. [2] 阎晓军, 张玉珠, 聂景旭. 超高速碰撞下Whipple防护结构的数值模拟 [J]. 宇航学报, 2002, 23(5): 81–84. DOI: 10.3321/j.issn:1000-1328.2002.05.016.YAN X J, ZHANG Y Z, NIE J X. Numerical simulation of the whipple shield under hypervelocity impact [J]. Journal of Astronautics, 2002, 23(5): 81–84. DOI: 10.3321/j.issn:1000-1328.2002.05.016. [3] WHIPPLE F L. Meteorites and space travel [J]. Astronomical Journal, 1947, 52(5): 131. [4] 张婷婷, 魏强, 侯庆志, 等. 空间碎片高速撞击的数值模拟方法评述 [J]. 材料导报, 2017, 31(S2): 438–442, 448.ZHANG T T, WEI Q, HOU Q Z, et al. Review of numerical simulation methods for hypervelocity impact of space debris [J]. Materials Review, 2017, 31(S2): 438–442, 448. [5] QUAN X, BIRNBAUM N K, COWLER M S, et al. Numerical simulation of structural deformation under shock and impact loads using a coupled multi-solver approach [C] // Proceedings of the 5th Asia-Pacific Conference on Shock and Impact Loads on Structures. Hunan, China, 2003. [6] 闫晓军, 张玉珠, 聂景旭. 空间碎片超高速碰撞数值模拟的SPH方法 [J]. 北京航空航天大学学报, 2005, 31(3): 351–354. DOI: 10.3969/j.issn.1001-5965.2005.03.019.YAN X J, ZHANG Y Z, NIE J X. Numerical simulation of space debris hypervelocity impact using SPH method [J]. Journal of Beijing University of Aeronauticsand Astronautics, 2005, 31(3): 351–354. DOI: 10.3969/j.issn.1001-5965.2005.03.019. [7] 刘有英, 王海福. 高速碰撞下航天器防护结构效能评价 [J]. 弹箭与制导学报, 2005, 25(4): 359–361. DOI: 10.3969/j.issn.1673-9728.2005.04.117.LIU Y Y, WANG H F. Evaluations of high-velocity impact for spacecraft shields [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(4): 359–361. DOI: 10.3969/j.issn.1673-9728.2005.04.117. [8] 强洪夫, 范树佳, 陈福振, 等. 基于拟流体模型的SPH新方法及其在弹丸超高速碰撞薄板中的应用 [J]. 爆炸与冲击, 2017, 37(6): 990–1000. DOI: 10.11883/1001-1455(2017)06-0990-11.QIANG H F, FAN S J, CHEN F Z, et al. A new smoothed particle hydrodynamics method based on the pseudo-fluid model and its application in hypervelocity impact of a projectile on a thin plate [J]. Explosion and Shock Waves, 2017, 37(6): 990–1000. DOI: 10.11883/1001-1455(2017)06-0990-11. [9] FERNÁNDEZ-MÉNDEZ S, HUERTA A. Imposing essential boundary conditions in mesh-free methods [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12/13/14): 1257–1275. DOI: 10.1016/j.cma.2003.12.019. [10] 尹晓文. 物质点法在Whipple防护结构高速冲击中的应用研究[D]. 太原: 太原理工大学, 2018. [11] ACIN M. SPH-Introduction to a meshless method [DB/OL]. [2015-06-13]. http://www.acin.net/2015/06/13/sph-introduction-to-a-meshless-method/. [12] LI B, HABBAL F, ORTIZ M. Optimal transportation meshfree approximation schemes for fluid and plastic flows [J]. International Journal for Numerical Methods in Engineering, 2010, 83(12): 1541–1579. DOI: 10.1002/nme.2869. [13] 柳森, 李毅, 黄洁, 等. 用于验证数值仿真的Whipple屏超高速撞击试验结果 [J]. 宇航学报, 2005, 26(4): 505–508. DOI: 10.3321/j.issn:1000-1328.2005.04.024.LIU S, LI Y, HUANG J, et al. Hypervelocity impact test results of Whipple shield for the validation of numerical simulation [J]. Journal of Astronautics, 2005, 26(4): 505–508. DOI: 10.3321/j.issn:1000-1328.2005.04.024. [14] ARROYO M, ORTIZ M. Local maximum-entropy approximation schemes [M] // GRIEBEL M, SCHWEITZERM A. Meshfree Methods for Partial Differential EquationsIII. Berlin, Heidelberg: Springer, 2006. DOI: 10.1007/978-3-540-46222-4_1. [15] LI B, KIDANE A, RAVICHANDRAN G, et al. Verification and validation of the optimal transportation meshfree (OTM) simulation of terminal ballistics [J]. International Journal of Impact Engineering, 2012, 42: 25–36. DOI: 10.1016/j.ijimpeng.2011.11.003. [16] KANE C, MARSDEN J E, ORTIZ M. Symplectic-energy-momentum preservingvariational integrators [J]. Journal of Mathematical Physics, 1999, 40(7): 3353–3371. DOI: 10.1063/1.532892. [17] JIANG F, LIAO H M, KE R J, et al. A monolithic Lagrangian mesh free scheme for fluid-structure interaction problems within the OTM framework [J]. Computer Methods in Applied Mechanics and Engineering, 2018, 337: 198–219. DOI: 10.1016/j.cma.2018.03.031. [18] 林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展 [J]. 高压物理学报, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.LIN J Y, LUO B Q, XU M Y, et al. Progress of aluminum projectile impacting on plate with hypervelocity [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774. [19] 管公顺, 朱耀, 迟润强, 等. 铝双层板结构撞击损伤的板间距效应实验研究 [J]. 材料科学与工艺, 2008, 16(5): 692–695. DOI: 10.3969/j.issn.1005-0299.2008.05.025.GUAN G S, ZHU Y, CHI R Q, et al. Experimental investigation of space effect on damage of aluminum dual-wall structure by hypervelocity impact [J]. Materials Science and Technology, 2008, 16(5): 692–695. DOI: 10.3969/j.issn.1005-0299.2008.05.025.