基于最优运输无网格法的Whipple屏超高速撞击数值模拟

樊江 袁圆 廖祜明 袁庆浩 陈高翔 黎波

樊江, 袁圆, 廖祜明, 袁庆浩, 陈高翔, 黎波. 基于最优运输无网格法的Whipple屏超高速撞击数值模拟[J]. 爆炸与冲击, 2020, 40(7): 074201. doi: 10.11883/bzycj-2019-0241
引用本文: 樊江, 袁圆, 廖祜明, 袁庆浩, 陈高翔, 黎波. 基于最优运输无网格法的Whipple屏超高速撞击数值模拟[J]. 爆炸与冲击, 2020, 40(7): 074201. doi: 10.11883/bzycj-2019-0241
FAN Jiang, YUAN Yuan, LIAO Huming, YUAN Qinghao, CHEN Gaoxiang, LI Bo. Numerical simulation of Whipple shield hypervelocity impact based on optimal transportation meshfree method[J]. Explosion And Shock Waves, 2020, 40(7): 074201. doi: 10.11883/bzycj-2019-0241
Citation: FAN Jiang, YUAN Yuan, LIAO Huming, YUAN Qinghao, CHEN Gaoxiang, LI Bo. Numerical simulation of Whipple shield hypervelocity impact based on optimal transportation meshfree method[J]. Explosion And Shock Waves, 2020, 40(7): 074201. doi: 10.11883/bzycj-2019-0241

基于最优运输无网格法的Whipple屏超高速撞击数值模拟

doi: 10.11883/bzycj-2019-0241
详细信息
    作者简介:

    樊 江(1973- ),男,博士,副教授,fanjiang@buaa.edu.cn

    通讯作者:

    黎 波(1979- ),男,博士,教授,bo.li14@case.edu

  • 中图分类号: O385

Numerical simulation of Whipple shield hypervelocity impact based on optimal transportation meshfree method

  • 摘要: Whipple屏是航天器防护空间碎片撞击的常用结构。现有的方法在模拟Whipple屏超高速撞击时均存在问题,本文采用最优运输无网格法(optimal transportation meshfree, OTM)对其进行模拟。OTM法是一种拉格朗日无网格法,其特点是运用最优运输理论对时间进行离散,采用带有位置信息的节点和带有材料信息的物质点对空间进行离散,利用局部最大熵(local maximum entropy, LME)方法得到插值函数,基于能量释放率来判断材料是否失效。本文首先用OTM法对铝球超高速撞击单层铝板进行模拟,通过与实验结果和各类SPH法的计算结果对比,验证了OTM法在超高速撞击问题上的适用性;然后采用OTM法对Whipple屏超高速撞击进行模拟,将OTM法预测的缓冲墙与后墙的损伤情况与实验结果进行对比,结果显示OTM法不仅能准确预测缓冲墙的弹孔直径,也能很好地模拟出后墙的剥落、穿透情况和碎片云的形态。
  • 图  1  空间离散示意图[17]

    Figure  1.  Spatial discrete diagram[17]

    图  2  评估能量释放率的局部邻域[15]

    Figure  2.  The local neighborhood used to estimate the energy-release rate[15]

    图  3  铝球撞击铝板离散模型

    Figure  3.  Discrete model of aluminum ball impacting single aluminum plate

    图  4  OTM法与各类SPH方法计算结果对比

    Figure  4.  Comparison of OTM and various SPH methods’ simulation results

    图  5  实验模型示意图

    Figure  5.  Schematic diagram of experimental model

    图  6  Whipple屏超高速撞击数值模拟模型

    Figure  6.  The numerical simulation model of Whipple shield hypervelocity impact

    图  7  缓冲墙损伤对比图(撞击速度5.29 km/s)

    Figure  7.  Damage characteristics comparison chart of outer bumper (Impact velocity 5.29 km/s)

    图  8  实验与仿真中的剥落和穿透

    Figure  8.  Definitions of spalling and penetration in experiments and simulations

    图  9  后墙损伤图(撞击速度5.29 km/s)

    Figure  9.  Damage characteristics of spacecraft wall (impact velocity is 5.29 km/s)

    图  10  正撞碎片云对比图

    Figure  10.  Fragment cloud comparison chart of vertical impact

    图  11  斜撞碎片云对比图

    Figure  11.  Fragment cloud comparison chart of oblique impact

    表  1  LY12材料参数

    Table  1.   Material parameters of LY12

    密度/(kg∙m−3)弹性模量/GPa泊松比比热容/(J∙kg−1∙K−1)
    2 70068.90.33896
    下载: 导出CSV

    表  2  J2黏塑性模型参数

    Table  2.   Parameters of J2 viscoplasticity model

    σ0/MPa${\varepsilon }_{0}^{\rm{p}}$${\dot{\varepsilon } }_{0}^{\rm{p} }$nmqTm0/K$ a $$ {\gamma }_{0} $
    276$ 5\times {10}^{-4} $1 0000.0750.080.59251.51.97
    下载: 导出CSV

    表  3  铝球超高速撞击铝板结果对比

    Table  3.   Comparison of high-velocity impact results between aluminum projectile and plate

    方法d/mmε/%l/mmw/mml/wΔ/%
    Hiermaier实验27.51.39
    Hiermaier模拟35.027.31.11
    SPH法31.614.9102.875.51.36 2.2
    ASPH法28.9 5.1105.186.11.2212.2
    拟流体SPH法29.4 6.9105.781.41.30 6.5
    OTM法26.2 4.7104.276.71.36 2.2
    下载: 导出CSV

    表  4  实验参数设置

    Table  4.   Parameters in experiments

    实验弹丸直径/mm弹丸质量/g缓冲墙厚度/mm后墙厚度/mm撞击速度/(km·s−1)撞击角/(°)
    04-00905.000.17971.921.945.29 0
    04-00925.020.18261.941.905.52 0
    04-00795.000.18101.941.926.08 0
    04-00805.000.18111.921.906.15 0
    04-00844.040.09721.921.905.9545
    04-00834.020.09601.921.946.0245
    04-00754.020.09581.921.904.4745
    04-00774.000.09401.921.944.7445
    下载: 导出CSV

    表  5  缓冲墙弹孔尺寸对比

    Table  5.   Bullethole size comparison of outer bumper

    实验撞击速度/(km∙s−1)实验缓冲墙弹孔尺寸/mm仿真缓冲墙弹孔尺寸/mm相对误差
    04-00905.2911.510.58.69%
    04-00925.5211.710.96.84%
    04-00796.0812.411.29.68%
    04-00806.1512.611.86.35%
    04-00754.4710.6×8.510.9×8.992.83%×5.76%
    04-00774.7410.6×8.711.2×9.395.66%×7.93%
    04-00845.9511.6×10.212.3×10.16.03%×0.98%
    04-00836.0211.6×10.312.1×9.754.31%×5.34%
    下载: 导出CSV

    表  6  后墙损伤情况对比

    Table  6.   Damagecomparison of spacecraft wall

    实验撞击速度/(km∙s−1)实验后墙损伤情况仿真后墙损伤情况
    04-00905.293处剥落,无穿透无剥落,2处穿透
    04-00925.522处剥落,无穿透5处剥落,2处穿透
    04-00796.08无剥落,无穿透无剥落,无穿透
    04-00806.15无剥落,无穿透无剥落,无穿透
    04-00754.47无剥落,2处穿透无剥落,无穿透
    04-00774.74无剥落,无穿透无剥落,无穿透
    04-00845.951处剥落,1处穿透无剥落,无穿透
    04-00836.021处剥落,1处穿透1处剥落,无穿透
    下载: 导出CSV
  • [1] CHRISTIANSEN E L, KERR J H. Ballistic limit equations for spacecraft shielding [J]. International Journal of ImpactEngineering, 2001, 26(1−10): 93–104. DOI: 10.1016/S0734-743X(01)00070-7.
    [2] 阎晓军, 张玉珠, 聂景旭. 超高速碰撞下Whipple防护结构的数值模拟 [J]. 宇航学报, 2002, 23(5): 81–84. DOI: 10.3321/j.issn:1000-1328.2002.05.016.

    YAN X J, ZHANG Y Z, NIE J X. Numerical simulation of the whipple shield under hypervelocity impact [J]. Journal of Astronautics, 2002, 23(5): 81–84. DOI: 10.3321/j.issn:1000-1328.2002.05.016.
    [3] WHIPPLE F L. Meteorites and space travel [J]. Astronomical Journal, 1947, 52(5): 131.
    [4] 张婷婷, 魏强, 侯庆志, 等. 空间碎片高速撞击的数值模拟方法评述 [J]. 材料导报, 2017, 31(S2): 438–442, 448.

    ZHANG T T, WEI Q, HOU Q Z, et al. Review of numerical simulation methods for hypervelocity impact of space debris [J]. Materials Review, 2017, 31(S2): 438–442, 448.
    [5] QUAN X, BIRNBAUM N K, COWLER M S, et al. Numerical simulation of structural deformation under shock and impact loads using a coupled multi-solver approach [C] // Proceedings of the 5th Asia-Pacific Conference on Shock and Impact Loads on Structures. Hunan, China, 2003.
    [6] 闫晓军, 张玉珠, 聂景旭. 空间碎片超高速碰撞数值模拟的SPH方法 [J]. 北京航空航天大学学报, 2005, 31(3): 351–354. DOI: 10.3969/j.issn.1001-5965.2005.03.019.

    YAN X J, ZHANG Y Z, NIE J X. Numerical simulation of space debris hypervelocity impact using SPH method [J]. Journal of Beijing University of Aeronauticsand Astronautics, 2005, 31(3): 351–354. DOI: 10.3969/j.issn.1001-5965.2005.03.019.
    [7] 刘有英, 王海福. 高速碰撞下航天器防护结构效能评价 [J]. 弹箭与制导学报, 2005, 25(4): 359–361. DOI: 10.3969/j.issn.1673-9728.2005.04.117.

    LIU Y Y, WANG H F. Evaluations of high-velocity impact for spacecraft shields [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(4): 359–361. DOI: 10.3969/j.issn.1673-9728.2005.04.117.
    [8] 强洪夫, 范树佳, 陈福振, 等. 基于拟流体模型的SPH新方法及其在弹丸超高速碰撞薄板中的应用 [J]. 爆炸与冲击, 2017, 37(6): 990–1000. DOI: 10.11883/1001-1455(2017)06-0990-11.

    QIANG H F, FAN S J, CHEN F Z, et al. A new smoothed particle hydrodynamics method based on the pseudo-fluid model and its application in hypervelocity impact of a projectile on a thin plate [J]. Explosion and Shock Waves, 2017, 37(6): 990–1000. DOI: 10.11883/1001-1455(2017)06-0990-11.
    [9] FERNÁNDEZ-MÉNDEZ S, HUERTA A. Imposing essential boundary conditions in mesh-free methods [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12/13/14): 1257–1275. DOI: 10.1016/j.cma.2003.12.019.
    [10] 尹晓文. 物质点法在Whipple防护结构高速冲击中的应用研究[D]. 太原: 太原理工大学, 2018.
    [11] ACIN M. SPH-Introduction to a meshless method [DB/OL]. [2015-06-13]. http://www.acin.net/2015/06/13/sph-introduction-to-a-meshless-method/.
    [12] LI B, HABBAL F, ORTIZ M. Optimal transportation meshfree approximation schemes for fluid and plastic flows [J]. International Journal for Numerical Methods in Engineering, 2010, 83(12): 1541–1579. DOI: 10.1002/nme.2869.
    [13] 柳森, 李毅, 黄洁, 等. 用于验证数值仿真的Whipple屏超高速撞击试验结果 [J]. 宇航学报, 2005, 26(4): 505–508. DOI: 10.3321/j.issn:1000-1328.2005.04.024.

    LIU S, LI Y, HUANG J, et al. Hypervelocity impact test results of Whipple shield for the validation of numerical simulation [J]. Journal of Astronautics, 2005, 26(4): 505–508. DOI: 10.3321/j.issn:1000-1328.2005.04.024.
    [14] ARROYO M, ORTIZ M. Local maximum-entropy approximation schemes [M] // GRIEBEL M, SCHWEITZERM A. Meshfree Methods for Partial Differential EquationsIII. Berlin, Heidelberg: Springer, 2006. DOI: 10.1007/978-3-540-46222-4_1.
    [15] LI B, KIDANE A, RAVICHANDRAN G, et al. Verification and validation of the optimal transportation meshfree (OTM) simulation of terminal ballistics [J]. International Journal of Impact Engineering, 2012, 42: 25–36. DOI: 10.1016/j.ijimpeng.2011.11.003.
    [16] KANE C, MARSDEN J E, ORTIZ M. Symplectic-energy-momentum preservingvariational integrators [J]. Journal of Mathematical Physics, 1999, 40(7): 3353–3371. DOI: 10.1063/1.532892.
    [17] JIANG F, LIAO H M, KE R J, et al. A monolithic Lagrangian mesh free scheme for fluid-structure interaction problems within the OTM framework [J]. Computer Methods in Applied Mechanics and Engineering, 2018, 337: 198–219. DOI: 10.1016/j.cma.2018.03.031.
    [18] 林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展 [J]. 高压物理学报, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.

    LIN J Y, LUO B Q, XU M Y, et al. Progress of aluminum projectile impacting on plate with hypervelocity [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.
    [19] 管公顺, 朱耀, 迟润强, 等. 铝双层板结构撞击损伤的板间距效应实验研究 [J]. 材料科学与工艺, 2008, 16(5): 692–695. DOI: 10.3969/j.issn.1005-0299.2008.05.025.

    GUAN G S, ZHU Y, CHI R Q, et al. Experimental investigation of space effect on damage of aluminum dual-wall structure by hypervelocity impact [J]. Materials Science and Technology, 2008, 16(5): 692–695. DOI: 10.3969/j.issn.1005-0299.2008.05.025.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  3241
  • HTML全文浏览量:  1224
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-14
  • 修回日期:  2019-02-18
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回