• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

聚氯乙烯弹性体静动态力学性能及本构模型

雷经发 许孟 刘涛 宣言 孙虹 魏展

李冀龙, 唐亚男, 刘轩铭. 不同荷载模式下矿用救生舱受力性能的数值模拟[J]. 爆炸与冲击, 2017, 37(1): 140-149. doi: 10.11883/1001-1455(2017)01-0140-10
引用本文: 雷经发, 许孟, 刘涛, 宣言, 孙虹, 魏展. 聚氯乙烯弹性体静动态力学性能及本构模型[J]. 爆炸与冲击, 2020, 40(10): 103103. doi: 10.11883/bzycj-2019-0249
Li Jilong, Tang Ya'nan, Liu Xuanming. Simulation analysis of mine refuge chamber performance in different loading modes[J]. Explosion And Shock Waves, 2017, 37(1): 140-149. doi: 10.11883/1001-1455(2017)01-0140-10
Citation: LEI Jingfa, XU Meng, LIU Tao, XUAN Yan, SUN Hong, WEI Zhan. Static/dynamic mechanical properties and a constitutive model of a polyvinyl chloride elastomer[J]. Explosion And Shock Waves, 2020, 40(10): 103103. doi: 10.11883/bzycj-2019-0249

聚氯乙烯弹性体静动态力学性能及本构模型

doi: 10.11883/bzycj-2019-0249
基金项目: 安徽省自然科学基金(1708085ME130);安徽省高校优秀拔尖人才培育资助项目(gxbjZD2020078);汽车噪声振动和安全技术国家重点实验室开放基金(NVHSKL-201407)
详细信息
    作者简介:

    雷经发(1978- )男,博士,教授,rain78828@163.com

    通讯作者:

    刘 涛(1984- )男,博士,副教授,liutao19841015@163.com

  • 中图分类号: O347.3

Static/dynamic mechanical properties and a constitutive model of a polyvinyl chloride elastomer

  • 摘要: 为揭示聚氯乙烯弹性体在静、动态载荷下的力学性能,采用万能材料试验机和改进的分离式霍普金森压杆实验装置获得了材料在应变率为0.001、0.01、0.1、1 510、2 260和3 000 s−1下的应力应变曲线,并以屈服强度为整形器优选参数,对比了紫铜、铜版纸和铅等3种整形器材料的整形效果。使用修正的ZWT非线性黏弹性本构模型描述聚氯乙烯弹性体在静、动态载荷下的力学性能。结果表明:聚氯乙烯弹性体在静态载荷下具有应变率效应和显著的超弹性特性,动态载荷下表现出较明显的应变率效应和较强的抗变形能力,且静动态载荷下的力学行为受应变历史影响较大。3种整形器材料中铜版纸的整形效果最好。修正后的ZWT非线性黏弹性本构模型能够得到统一参数的本构表达式,且各应变率下的拟合结果与实验结果具有较好的一致性。
  • 图  1  SHPB装置示意图

    Figure  1.  Schematic diagram of the SHPB setup

    图  2  未使用整形器和使用不同材质的整形器所得的波形

    Figure  2.  Waveforms without and with pulse shapers made by different materials

    图  3  聚氯乙烯弹性体准静态压缩应力应变曲线

    Figure  3.  Quasi-static compressive stress-strain curves of the PVC elastomer

    图  4  聚氯乙烯弹性体静、动态压缩应力应变曲线

    Figure  4.  Static and dynamic compressive stress-strain curves of the PVC elastomer

    图  5  ZWT模型

    Figure  5.  The ZWT model

    图  6  应力应变曲线与本构拟合

    Figure  6.  Comparison between predicted and experimental stress-strain curves

    图  7  修正后的ZWT本构拟合与应力应变曲线

    Figure  7.  Comparison between stress-strain curves and the fitting curves of the modified ZWT model

    图  8  修正后ZWT模型的拟合曲线与验证数据对比

    Figure  8.  Comparison between the verification data and the experimental curves of the modified ZWT model

    表  1  整形器材料参数

    Table  1.   Parameters of the pulse shaper material

    整形器
    材质
    整形器尺寸屈服强度/
    MPa
    撞击速度/
    (m·s−1)
    紫铜10 mm×0.6 mm70.0 8.12
    铜版纸10 mm×10 mm×0.6 mm
    (双层厚)
    5.958.10
    10 mm×0.6 mm5.07.99
    下载: 导出CSV

    表  2  拟合参数值

    Table  2.   Fitted parameters

    ˙ε/s1E0 or (E0+E1)/MPaα/MPaβ/MPaE1 or E2/MPaθ1 or θ2/s相关系数平方R2
    0.0013.147.61910.970.419 721170.999 9
    0.012.85414.8615.156.664×10−95.933×10−91
    0.12.92417.9831.191.320.17751
    1 510−81.4−748.83 580202.7134.60.995 5
    2 260138.2−669.93 10017.195520.997 3
    3 00090.1−517.92 65075.6477.580.998 6
    下载: 导出CSV

    表  3  修正后的ZWT模型的拟合结果

    Table  3.   The fitting result of the modified ZWT model

    ˙ε/s1相关系数平方R2˙ε/s1相关系数平方R2
    0.0010.999 91 5100.997 3
    0.01 0.998 32 2600.993 0
    0.1 0.997 43 0000.996 1
    下载: 导出CSV

    表  4  修正后的ZWT模型的验证结果

    Table  4.   Verification result of the modified ZWT model

    ˙ε/s1相关系数平方R2
    0.0050.997 1
    1 3100.988 7
    1 8900.996 3
    下载: 导出CSV
  • [1] BERNARD C A, BAHLOULI N, WAGNER-KOCHER C, et al. Multiscale description and prediction of the thermomechanical behavior of multilayered plasticized PVC under a wide range of strain rate [J]. Journal of Materials Science, 2018, 53(20): 14834–14849. DOI: 10.1007/s10853-018-2625-5.
    [2] JHA N K, NACKENHORST U, PAWAR V S, et al. On the constitutive modelling of fatigue damage in rubber-like materials [J]. International Journal of Solids and Structures, 2019, 159: 77–89. DOI: 10.1016/j.ijsolstr.2018.09.022.
    [3] KIDD T H, ZHUANG S, RAVICHANDRAN G. In situ mechanical characterization during deformation of PVC polymeric foams using ultrasonics and digital image correlation [J]. Mechanics of Materials, 2012, 55: 82–88. DOI: 10.1016/j.mechmat.2012.08.001.
    [4] 刘高冲, 金涛, 陈圣家, 等. 聚氨酯弹性体静动态加载条件下力学性能的研究 [J]. 材料导报, 2017, 31(S1): 315–318.

    LIU G C, JIN T, CHEN S J, et al. Study on mechanical properties of polyurethane elastomer under static/dynamic loading conditions [J]. Materials Review, 2017, 31(S1): 315–318.
    [5] 王宝珍, 胡时胜. 猪后腿肌肉的冲击压缩特性实验 [J]. 爆炸与冲击, 2010, 30(1): 33–38. DOI: 10.11883/1001-1455(2010)01-0033-06.

    WANG B Z, HU S S. Dynamic compression experiments of porcine ham muscle [J]. Explosion and Shock Waves, 2010, 30(1): 33–38. DOI: 10.11883/1001-1455(2010)01-0033-06.
    [6] 王宝珍, 胡时胜. 猪肝动态力学性能及本构模型研究 [J]. 力学学报, 2017, 49(6): 1399–1408. DOI: 10.6052/0459-1879-17-238.

    WANG B Z, HU S S. Research on dynamic mechanical response and constitutive model of porcine liver [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1399–1408. DOI: 10.6052/0459-1879-17-238.
    [7] SONG B, CHEN W N, GE Y, et al. Dynamic and quasi-static compressive response of porcine muscle [J]. Journal of Biomechanics, 2007, 40(13): 2999–3005. DOI: 10.1016/j.jbiomech.2007.02.001.
    [8] NAIK N K, SHANKAR P J, KAVALA V R, et al. High strain rate mechanical behavior of epoxy under compressive loading: experimental and modeling studies [J]. Materials Science and Engineering: A, 2011, 528(3): 846–854. DOI: 10.1016/j.msea.2010.10.099.
    [9] SNEDEKER J G, NIEDERER P, SCHMIDLIN F R, et al. Strain-rate dependent material properties of the porcine and human kidney capsule [J]. Journal of Biomechanics, 2005, 38(5): 1011–1021. DOI: 10.1016/j.jbiomech.2004.05.036.
    [10] 马赛尔, 许进升, 童心, 等. 高密度聚乙烯单轴拉伸力学性能及本构关系研究 [J]. 中国塑料, 2016, 30(4): 88–92. DOI: 10.19491/j.issn.1001-9278.2016.04.015.

    MA S E, XU J S, TONG X, et al. Research on uniaxially tensile mechanical properties and constitutive model of high density polyethylene [J]. China Plastics, 2016, 30(4): 88–92. DOI: 10.19491/j.issn.1001-9278.2016.04.015.
    [11] GUO H, GUO W G, AMIRKHIZI A V, et al. Experimental investigation and modeling of mechanical behaviors of polyurea over wide ranges of strain rates and temperatures [J]. Polymer Testing, 2016, 53: 234–244. DOI: 10.1016/j.polymertesting.2016.06.004.
    [12] JIANG J, XU J S, ZHANG Z S, et al. Rate-dependent compressive behavior of EPDM insulation: experimental and constitutive analysis [J]. Mechanics of Materials, 2016, 96: 30–38. DOI: 10.1016/j.mechmat.2016.02.003.
    [13] 孙紫建, 王礼立. 高应变率大变形下的聚丙烯/尼龙共混高聚物损伤型本构特性 [J]. 爆炸与冲击, 2006, 26(6): 492–497. DOI: 10.11883/1001-1455(2006)06-0492-06.

    SUN Z J, WANG L L. The constitutive behavior of PP/PA polymer blends taking account of damage evolution at high strain rate and large deformation [J]. Explosion and Shock Waves, 2006, 26(6): 492–497. DOI: 10.11883/1001-1455(2006)06-0492-06.
    [14] XU X, GAO S Q, ZHANG D M, et al. Mechanical behavior of liquid nitrile rubber-modified epoxy resin: experiments, constitutive model and application [J]. International Journal of Mechanical Sciences, 2019, 151: 46–60. DOI: 10.1016/j.ijmecsci.2018.11.003.
    [15] LIU K, WU Z L, REN H L, et al. Strain rate sensitive compressive response of gelatine: experimental and constitutive analysis [J]. Polymer Testing, 2017, 64: 254–266. DOI: 10.1016/j.polymertesting.2017.09.008.
    [16] 周海霞, 李世鹏, 谢侃, 等. HTPB推进剂宽泛应变率下黏弹性本构模型研究 [J]. 固体火箭技术, 2017, 40(3): 325–329, 396. DOI: 10.7673/j.issn.1006-2793.2017.03.010.

    ZHOU H X, LI S P, XIE K, et al. Research on the viscoelastic constitutive model of HTPB propellant over a wide range of strain rates [J]. Journal of Solid Rocket Technology, 2017, 40(3): 325–329, 396. DOI: 10.7673/j.issn.1006-2793.2017.03.010.
    [17] 卢芳云, CHEN W, FREW D J. 软材料的SHPB实验设计 [J]. 爆炸与冲击, 2002, 22(1): 15–19.

    LU F Y, CHEN W, FREW D J. A design of SHPB experiments for soft materials [J]. Explosion and Shock Waves, 2002, 22(1): 15–19.
  • 期刊类型引用(1)

    1. 刘志通. 煤矿可移动式救生舱防护密闭门气密性数值模拟研究. 建井技术. 2024(04): 60-64+54 . 百度学术

    其他类型引用(0)

  • 加载中
推荐阅读
多次落石冲击下棚洞结构动力响应数值模拟
刘红岩 等, 爆炸与冲击, 2025
基于流固耦合联合仿真的软管锥套式空中加油对接过程建模与分析
杨宇宸 等, 爆炸与冲击, 2025
不同点火方式下hmx基pbx炸药反应演化过程的特征分析
楼建锋 等, 爆炸与冲击, 2024
柱形装药空中爆炸冲击波荷载研究
王明涛 等, 爆炸与冲击, 2024
基于amesim的矿用自卸车悬架系统平顺性分析
刘启航 等, 西南交通大学学报, 2025
基于adams变胞升降机构构态变换动力学仿真分析
周怀堂 等, 辽宁石油化工大学学报, 2024
基于随机分布抛石模型的重力式沉箱码头水下爆炸毁伤数值模拟分析
白峰涛 等, 应用力学学报, 2025
Turmeric carbon quantum dots enhanced chitosan nanocomposite films based on photodynamic inactivation technology for antibacterial food packaging
Wen, Fangzhou et al., CARBOHYDRATE POLYMERS, 2023
Data-driven modeling for residual velocity of projectile penetrating reinforced concrete slabs
ENGINEERING STRUCTURES, 2024
Machine learning – finite element mesh optimization-based modeling and prediction of excavation-induced shield tunnel ground settlement
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS
Powered by
图(8) / 表(4)
计量
  • 文章访问数:  4123
  • HTML全文浏览量:  1659
  • PDF下载量:  146
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-06-25
  • 修回日期:  2020-07-29
  • 网络出版日期:  2020-08-25
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回