超材料混凝土的带隙特征及对冲击波的衰减效应

张恩 路国运 杨会伟 曹瑞东 陈鹏程

张恩, 路国运, 杨会伟, 曹瑞东, 陈鹏程. 超材料混凝土的带隙特征及对冲击波的衰减效应[J]. 爆炸与冲击, 2020, 40(6): 063301. doi: 10.11883/bzycj-2019-0252
引用本文: 张恩, 路国运, 杨会伟, 曹瑞东, 陈鹏程. 超材料混凝土的带隙特征及对冲击波的衰减效应[J]. 爆炸与冲击, 2020, 40(6): 063301. doi: 10.11883/bzycj-2019-0252
ZHANG En, LU Guoyun, YANG Huiwei, CAO Ruidong, CHEN Pengcheng. Band gap features of metaconcrete and shock wave attenuation in it[J]. Explosion And Shock Waves, 2020, 40(6): 063301. doi: 10.11883/bzycj-2019-0252
Citation: ZHANG En, LU Guoyun, YANG Huiwei, CAO Ruidong, CHEN Pengcheng. Band gap features of metaconcrete and shock wave attenuation in it[J]. Explosion And Shock Waves, 2020, 40(6): 063301. doi: 10.11883/bzycj-2019-0252

超材料混凝土的带隙特征及对冲击波的衰减效应

doi: 10.11883/bzycj-2019-0252
基金项目: 国家自然科学基金(11372209);山西省自然科学基金(201901D111089)
详细信息
    作者简介:

    张 恩(1991- ),男,博士研究生,18734862993@163.com

    通讯作者:

    路国运(1973- ),男,博士,教授,luguoyun@tyut.edu.cn

  • 中图分类号: O382

Band gap features of metaconcrete and shock wave attenuation in it

  • 摘要: 借鉴超材料的研究思路,在混凝土中引入谐振骨料,设计出具有消波特性的超材料混凝土。首先,通过结构动力学方法计算超材料混凝土的有效质量,从而建立了超材料混凝土带隙起始频率及截止频率的简化模型,并给出了带隙起始频率及截止频率的理论表达式。然后,分析了涂层弹性模量、芯柱密度、基体密度、骨料体积占比和芯柱边长与软涂层厚度比对超材料混凝土带隙特征的影响。最后,采用数值模拟的方法,对比了超材料混凝土和普通混凝土对冲击波的衰减效应。研究结果表明:(1)低弹性模量涂层能够形成低频带隙,但带隙宽度较窄,而高弹性模量涂层能够形成较宽的带隙,但带隙起始频率较高;(2)通过选择高密度芯柱材料和低密度基体材料,可以得到低频、宽带隙特征;(3)通过增大骨料体积占比和芯柱边长与软涂层厚度比可以实现扩宽带隙的目的;(4)与普通混凝土相比,超材料混凝土对冲击波具有更好的衰减作用。
  • 图  1  本文中提出的超材料混凝土

    Figure  1.  Metaconcrete designed in this paper

    图  2  超材料混凝土单胞及一维晶格系统

    Figure  2.  A unit cell and one-dimensional lattice systems for metaconcrete

    图  3  有效质量与激振频率的关系

    Figure  3.  Relationship between effective mass and excitation frequency

    图  4  带隙起始频率及截止频率的简化模型[22]

    Figure  4.  Simplified models for band gap start and cutoff frequencies[22]

    图  5  涂层弹性模量对带隙特性的影响

    Figure  5.  Effects of coating elastic modulus on band gap

    图  6  芯柱密度对带隙特征的影响

    Figure  6.  Effects of core column density on band gap

    图  7  基体密度对带隙特征的影响

    Figure  7.  Effects of matrix density on band gap

    图  8  γ=10时,骨料体积占比对带隙特征的影响

    Figure  8.  Effect of volume fraction of aggregate on band gap when γ=10

    图  9  β=0.36时,γ对带隙特征的影响

    Figure  9.  Effect of γ on band gap when β=0.36

    图  10  有限元模型俯视图

    Figure  10.  The top views of finite element models

    图  11  冲击波压力-时间曲线

    Figure  11.  Pressure-time curve of shock wave

    图  12  各截面平均应力时程曲线

    Figure  12.  Average stress-time curve at each section

  • [1] WEGENER M. Metamaterials beyond optics [J]. Science, 2013, 342(6161): 939–940. DOI: 10.1126/science.1246545.
    [2] LANDY N, SMITH D R. A full-parameter unidirectional metamaterial cloak for microwaves [J]. Nature Materials, 2013, 12(1): 25–28. DOI: 10.1038/nmat3476.
    [3] LI B, TAN K T, CHRISTENSEN J. Heat conduction tuning by hyperbranched nanophononic metamaterials [J]. Journal of Applied Physics, 2018, 123(20): 205105. DOI: 10.1063/1.5023487.
    [4] LI B, TAN K T, CHRISTENSEN J. Tailoring the thermal conductivity in nanophononic metamaterials [J]. Physical Review B, 2017, 95(14): 144305. DOI: 10.1103/PhysRevB.95.144305.
    [5] WANG Y Z, LI F M, WANG Y S. Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain [J]. International Journal of Mechanical Sciences, 2016, 106: 357–362. DOI: 10.1016/j.ijmecsci.2015.12.004.
    [6] BANERJEE B, NAGY P B. An introduction to metamaterials and waves in composites [J]. Journal of the Acoustical Society of America, 2012, 131(2): 1665. DOI: 10.1121/1.3672699.
    [7] AL BA'BA'A H B, NOUH M. Mechanics of longitudinal and flexural locally resonant elastic metamaterials using a structural power flow approach [J]. International Journal of Mechanical Sciences, 2017, 122: 341–354. DOI: 10.1016/j.ijmecsci.2017.01.034.
    [8] LIU X N, HU G K, HUANG G L, et al. An elastic metamaterial with simultaneously negative mass density and bulk modulus [J]. Applied Physics Letters, 2011, 98(25): 251907. DOI: 10.1063/1.3597651.
    [9] LI J, CHAN C T. Double-negative acoustic metamaterial [J]. Physical Review E, 2004, 70(5): 055602(R). DOI: 10.1103/PhysRevE.70.055602.
    [10] LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials [J]. Science, 2000, 289(5485): 1734–1736. DOI: 10.1126/science.289.5485.1734.
    [11] LIU Z Y, CHAN C T, SHENG P, et al. Elastic wave scattering by periodic structures of spherical objects: theory and experiment [J]. Physical Review B, 2000, 62(4): 2446–2457. DOI: 10.1103/PhysRevB.62.2446.
    [12] LIU Z Y, CHAN C T, SHENG P. Three-component elastic wave band-gap material [J]. Physical Review B, 2002, 65(16): 165116. DOI: 10.1103/PhysRevB.65.165116.
    [13] LIU Z Y, CHAN C T, SHENG P. Analytic model of phononic crystals with local resonances [J]. Physical Review B, 2005, 71(1): 014103. DOI: 10.1103/PhysRevB.71.014103.
    [14] YANG Z, DAI H M, CHAN N H, et al. Acoustic metamaterial panels for sound attenuation in the 50−1 000 Hz regime [J]. Applied Physics Letters, 2010, 96(4): 041906. DOI: 10.1063/1.3299007.
    [15] YANG Z, MEI J, YANG M, et al. Membrane-type acoustic metamaterial with negative dynamic mass [J]. Physical Review Letters, 2008, 101(20): 204301. DOI: 10.1103/PhysRevLett.101.204301.
    [16] 吴健, 白晓春, 肖勇, 等. 一种多频局域共振型声子晶体板的低频带隙与减振特性 [J]. 物理学报, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.

    WU J, BAI X C, XIAO Y, et al. Low frequency band gaps and vibration reduction properties of a multi-frequency locally resonant phononic plate [J]. Acta Physica Sinica, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.
    [17] 张印, 尹剑飞, 温激鸿, 等. 基于质量放大局域共振型声子晶体的低频减振设计 [J]. 振动与冲击, 2016, 35(17): 26–32. DOI: 10.13465/j.cnki.jvs.2016.17.005.

    ZHANG Y, YIN J F, WEN J H, et al. Low frequency vibration reduction design for inertial local resonance phononic crystals based on inertial amplification [J]. Journal of Vibration and Shock, 2016, 35(17): 26–32. DOI: 10.13465/j.cnki.jvs.2016.17.005.
    [18] BRÛLÉ S, JAVELAUD E H, ENOCH S, et al. Experiments on seismic metamaterials: molding surface waves [J]. Physical Review Letters, 2014, 112(13): 133901. DOI: 10.1103/PhysRevLett.112.133901.
    [19] 郜英杰, 范华林, 张蓓, 等. 超材料消波混凝土板在二维平面波作用下的削波效应研究 [J]. 振动与冲击, 2018, 37(20): 39–44. DOI: 10.13465/j.cnki.jvs.2016.17.005.

    GAO Y J, FAN H L, ZHANG B, et al. Wave attenuation of super-material wave absorbing concrete panel subjected to two-dimensional plane wave [J]. Journal of Vibration and Shock, 2018, 37(20): 39–44. DOI: 10.13465/j.cnki.jvs.2016.17.005.
    [20] LI Q Q, HE Z C, LI E, et al. Design of a multi-resonator metamaterial for mitigating impact force [J]. Journal of Applied Physics, 2019, 125(3): 035104. DOI: 10.1063/1.5029946.
    [21] HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials [J]. International Journal of Engineering Science, 2009, 47(4): 610–617. DOI: 10.1016/j.ijengsci.2008.12.007.
    [22] SHENG X, ZHAO C Y, YI Q, et al. Engineered metabarrier as shield from longitudinal waves: band gap properties and optimization mechanisms [J]. Journal of Zhejiang University: Science A: Applied Physics and Engineering, 2018, 19(9): 663–675. DOI: 10.1631/jzus.A1700192.
    [23] MITCHELL S J, PANDOLFI A, ORTIZ M. Metaconcrete: designed aggregates to enhance dynamic performance [J]. Journal of the Mechanics and Physics of Solids, 2014, 65: 69–81. DOI: 10.1016/j.jmps.2014.01.003.
  • 加载中
图(12)
计量
  • 文章访问数:  5747
  • HTML全文浏览量:  2423
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-25
  • 修回日期:  2020-04-26
  • 网络出版日期:  2020-05-25
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回