下穿隧道爆破荷载激励下边坡振动预测及能量分析

何理 钟东望 李鹏 宋琨 司剑峰

何理, 钟东望, 李鹏, 宋琨, 司剑峰. 下穿隧道爆破荷载激励下边坡振动预测及能量分析[J]. 爆炸与冲击, 2020, 40(7): 075201. doi: 10.11883/bzycj-2019-0255
引用本文: 何理, 钟东望, 李鹏, 宋琨, 司剑峰. 下穿隧道爆破荷载激励下边坡振动预测及能量分析[J]. 爆炸与冲击, 2020, 40(7): 075201. doi: 10.11883/bzycj-2019-0255
HE Li, ZHONG Dongwang, LI Peng, SONG Kun, SI Jianfeng. Vibration prediction and energy analysis of slope under blasting load in underpass tunnel[J]. Explosion And Shock Waves, 2020, 40(7): 075201. doi: 10.11883/bzycj-2019-0255
Citation: HE Li, ZHONG Dongwang, LI Peng, SONG Kun, SI Jianfeng. Vibration prediction and energy analysis of slope under blasting load in underpass tunnel[J]. Explosion And Shock Waves, 2020, 40(7): 075201. doi: 10.11883/bzycj-2019-0255

下穿隧道爆破荷载激励下边坡振动预测及能量分析

doi: 10.11883/bzycj-2019-0255
基金项目: 国家自然科学基金项目(51574184,51904210);湖北省教育厅科学技术研究项目(Q20181109);水利部岩土力学与工程重点实验室开放基金(CKWV2018473/KY);三峡库区地质灾害教育部重点实验室开放基金(2017KDZ02);冶金工业过程系统科学湖北省重点实验室开放基金(Y201717)
详细信息
    作者简介:

    何 理(1986- ),男,博士,副教授,emp-heli@hotmail.com

    通讯作者:

    钟东望(1963- ),男,教授,博士生导师,1057831589@qq.com

  • 中图分类号: O389; O383.2

Vibration prediction and energy analysis of slope under blasting load in underpass tunnel

  • 摘要: 为解决边坡与下穿近接隧道协同爆破施工安全难题,结合某石油储备基地扩建项目,运用量纲推导、现场实验与信号分析相结合的方法,构建考虑高程影响的振动峰值速度公式,研究隧道爆破振动能量沿坡面的衰减机制。结果显示,边坡同台阶边沿处质点振速峰值大于坡脚处,坡面局部存在振动速度高程放大效应;引入相对坡度H/D的爆破振动模型对坡面质点振速预测精度高,可反映边坡角对高程放大效应的影响;振动速度及能量沿坡面均呈现出近区衰减快、远区衰减慢的传播特性,同时隧道爆破振动能量集中分布在0~300 Hz范围的多个子振频带,且高频能量沿坡面衰减更快,能量卓越频带中值以指数形式衰减,能量最终向低频带集中。
  • 图  1  边坡与隧道的空间布局

    Figure  1.  Spatial Distribution of slope and tunnel

    图  2  隧道炮孔布置及爆破网路

    Figure  2.  Blasthole layout and blasting network of tunnel

    图  3  振动传感器安装基座

    Figure  3.  Mounting base of sensor

    图  4  坡面不同高程振动速度分布

    Figure  4.  Vibration velocity distribution at different elevations on slope

    图  5  归一化速度和能量随距离的变化关系

    Figure  5.  Relation of normalized velocity and energy with distance

    图  6  爆破振动信号各频带能量分布图

    Figure  6.  Energy distribution of blasting vibration signals in each frequency band

    图  7  卓越频带中值与传播距离的变化关系

    Figure  7.  The relation between mid-value of dominant frequency band and propagation distance

    表  1  坡面质点振动速度

    Table  1.   Particle vibration velocity on slope surface

    振动信号D/mH/mvmax/(cm·s−1)
    1-1 5.6 12.510.81
    1-2 2.6 9.78
    2-1 7.9 26.5 3.41
    2-2 10.9 2.02
    3-1 21.4 40.5 1.59
    3-2 24.4 0.96
    4-1 34.9 54.5 0.94
    4-2 37.9 0.79
    5-1 48.9 67.5 0.67
    5-2 51.9 0.64
    6-1 63.0 80.5 0.68
    6-2 66.0 0.63
    7-1 77.0 93.5 0.35
    7-2 80.0 0.28
    8-1 92.1105.5 0.20
    8-2 95.1 0.16
    9146.2117.5 0.07
     注:D为水平爆心距;H为垂直爆心距;vmax为质点振动速度峰值;信号编号m-nm表示台阶级数,m=1, 2, 3, …, 9;n=1表示台阶边沿处监测点,n=2表示内侧坡脚处监测点。
    下载: 导出CSV

    表  2  各变量量纲

    Table  2.   Dimension of variables

    量纲QDCpHEμρfV
    M10 00 10 1 0 0
    L01 11−10−3 0 1
    T00−10−20 0−1−1
     注:表2M为质量量纲,L为长度量纲,T为时间量纲。
    下载: 导出CSV

    表  3  振动速度预测模型及拟合系数

    Table  3.   Prediction model and correlation coefficient of vibration velocity

    公式形式振动速度预测模型相关系数
    $v = K{\left( {\dfrac{{\sqrt[3]{Q}}}{R}} \right)^\alpha }$$v = 139.7{\left( {\dfrac{{\sqrt[3]{Q}}}{R}} \right)^{1.62}}$0.939
    $v = K{\left( {\dfrac{{\sqrt[3]{Q}}}{D}} \right)^\alpha }{\left( {\dfrac{{\sqrt[3]{Q}}}{H}} \right)^\beta }$$v = 62.2{\left( {\dfrac{{\sqrt[3]{Q}}}{D}} \right)^{0.51}}{\left( {\dfrac{{\sqrt[3]{Q}}}{H}} \right)^{1.02}}$0.927
    $v = K{\left( {\dfrac{{\sqrt[3]{Q}}}{R}} \right)^\alpha }{\left( {\dfrac{R}{D}} \right)^\beta }$$v = 208.5{\left( {\dfrac{{\sqrt[3]{Q}}}{R}} \right)^{1.69}}{\left( {\dfrac{R}{D}} \right)^{ - 0.21}}$0.941
    $v = K{\left( {\dfrac{{\sqrt[3]{Q}}}{R}} \right)^\alpha }{\left( {\dfrac{{\sqrt[3]{Q}}}{H}} \right)^\beta }$$v = 70.1{\left( {\dfrac{{\sqrt[3]{Q}}}{R}} \right)^{4.61}}{\left( {\dfrac{{\sqrt[3]{Q}}}{H}} \right)^{ - 3.49}}$0.954
    $v = K'{\left( {\dfrac{{\sqrt[3]{Q}}}{D}} \right)^\alpha }{\left( {\dfrac{R}{D}} \right)^\beta }{\left( {\dfrac{H}{D}} \right)^\gamma }$$v = 204.4{\left( {\dfrac{{\sqrt[3]{Q}}}{D}} \right)^{1.34}}{\left( {\dfrac{R}{D}} \right)^{ - 6.16}}{\left( {\dfrac{H}{D}} \right)^{4.17}}$0.958
    下载: 导出CSV

    表  4  各振动信号总能量

    Table  4.   Total energy of vibration signals

    信号编号1-11-22-12-23-13-24-14-25-15-26-16-27-17-28-18-29
    总能量/mJ1518.21770.9262.3122.933.315.811.27.65.03.83.84.92.81.81.51.20.2
    下载: 导出CSV

    表  5  信号能量集中频带的分布

    Table  5.   Energy distribution in energy concentrated bands

    信号能量集中频带1能量集中频带2能量集中频带3能量集中频带4卓越频带/Hz
    频率/Hz能量占比/%频率/Hz能量占比/%频率/Hz能量占比/%频率/Hz能量占比/%
    1-154.6~64.3517.1115.05~126.7524.6179.40~202.8020.7232.05~251.5517.4115.05~126.75
    1-239.00~62.4024.9118.95~126.7544.6187.20~196.9518.2118.95~126.75
    2-1107.25~126.7520.4187.20~202.8036.1243.75~251.5526.2187.20~202.80
    2-262.40~78.0011.1189.15~202.8021.9235.95~249.6018.7189.15~202.80
    3-131.20~48.7517.362.40~81.9022.993.60~105.309.1189.15~202.8010.862.40~81.90
    3-221.45~50.7021.462.40~81.9026.993.60~109.2028.793.60~109.20
    4-133.15~109.2081.7187.20~241.805.933.15~109.20
    4-217.55~46.8031.160.45~78.0011.395.55~111.1535.795.55~111.15
    5-129.25~64.3534.793.6~117.0042.4189.15~202.808.693.60~117.00
    5-229.25~54.6022.693.6~109.2043.4189.15~195.0010.493.60~109.20
    6-117.55~23.4014.333.15~64.3542.6101.40~109.2020.233.15~64.35
    6-217.55~23.4011.331.2~58.5072.393.60~101.405.231.20~58.50
    7-129.25~54.6071.993.6~105.309.429.25~54.60
    7-217.55~46.8069.895.55~101.411.417.55~46.80
    8-10~3.9013.719.50~50.7068.919.5~50.70
    8-20~3.9019.917.55~23.4022.929.25~35.1017.742.90~54.6021.717.55~23.40
    917.55~33.1562.148.75~62.4026.217.55~33.15
    下载: 导出CSV
  • [1] 吴亮, 金沐, 钟冬望, 等. 一种边坡与近接隧道协同爆破施工的爆破控制方法: CN201510023750.5[P]. 2015-05-27.
    [2] 黄志强, 吴立. 爆破振动对隧道洞口顺层岩质边坡稳定性影响研究 [J]. 爆破, 2012, 29(1): 110–114, 118. DOI: 10.3963/j.issn.1001-487X.2012.01.029.

    HUANG Z Q, WU L. Effects of blasting vibration on stability of bedding rock slope at tunnel entrance [J]. Blasting, 2012, 29(1): 110–114, 118. DOI: 10.3963/j.issn.1001-487X.2012.01.029.
    [3] 宋杰. 傍山隧道施工爆破震动效应与测试技术研究[D]. 长沙: 中南大学, 2013.

    SONG J. Research on Construction blasting vibration effects and testing technology of mountain-adjacent tunnel [D]. Changsha: Central South University, 2013.
    [4] 金华东, 邓鹏飞, 徐伟健. 傍山隧道施工爆破方案研究 [J]. 中外公路, 2014, 34(6): 202–205. DOI: 10.3969/j.issn.1671-2579.2014.06.049.

    JIN H D, DENG P F, XU W J. Study on blasting scheme for construction of mountain-adjacent tunnel [J]. Journal of China and Foreign Highway, 2014, 34(6): 202–205. DOI: 10.3969/j.issn.1671-2579.2014.06.049.
    [5] 黄诗渊. 水工隧洞爆破施工振动对邻近边坡的影响研究[D]. 重庆: 重庆交通大学, 2016.

    HUNAG S Y. The influence research of hydraulic tunnel blasting vibration on adjacent slope [D]. Chongqing: Chongqing Jiaotong University, 2016.
    [6] 徐金贵, 蒲传金, 贺高威, 等. 傍山隧道爆破振动边坡传播规律试验研究 [J]. 有色金属(矿山部分), 2018, 70(3): 51–58, 112. DOI: 10.3969/j.issn.1671-4172.2018.03.012.

    XU J G, PU C J, HE G W, et al. Experimental study on propagation of side slope of blasting vibration of mountain-adjacent tunnel [J]. Nonferrous Metals (Mining Section), 2018, 70(3): 51–58, 112. DOI: 10.3969/j.issn.1671-4172.2018.03.012.
    [7] 贾党育. 隧道爆破开挖对洞口段边坡稳定性影响的数值分析 [J]. 矿冶工程, 2017, 37(1): 25–28. DOI: 10.3969/j.issn.0253-6099.2017.01.007.

    JIA D Y. Numerical analysis for effect of tunnel excavation by blasting on slope stability of portal section [J]. Mining and Metallurgical Engineering, 2017, 37(1): 25–28. DOI: 10.3969/j.issn.0253-6099.2017.01.007.
    [8] 兰明雄, 林从谋. 小净距隧道爆破振动传播规律小波包分析 [J]. 煤矿爆破, 2009(3): 1–4.

    LAN M X, LIN C M. Wavelet packet analysis of vibration caused by blasting high rock slope [J]. Coal Mine Blasting, 2009(3): 1–4.
    [9] 蒋丽丽, 林从谋, 陈泽观, 等. 岩石高边坡爆破振动传播规律小波包分析 [J]. 有色金属(矿山部分), 2009, 61(2): 43–45, 52. DOI: 10.3969/j.issn.1671-4172.2009.02.014.

    JIANG L L, LIN C M, CHEN Z G, et al. Wavelet packet analysis of vibration caused by high rock slope blasting [J]. Nonferrous Metals (Mining Section), 2009, 61(2): 43–45, 52. DOI: 10.3969/j.issn.1671-4172.2009.02.014.
    [10] 张声辉, 刘连生, 钟清亮, 等. 露天边坡爆破地震波能量分布特征研究 [J]. 振动与冲击, 2019, 38(7): 224–232. DOI: 10.13465/j.cnki.jvs.2019.07.032.

    ZHANG S H, LIU L S, ZHONG Q L, et al. Energy distribution characteristics of blast seismic wave on open pit slope [J]. Journal of Vibration and Shock, 2019, 38(7): 224–232. DOI: 10.13465/j.cnki.jvs.2019.07.032.
    [11] 周建敏. 爆破振动对含结构面边坡稳定性影响研究[D]. 重庆: 重庆大学, 2015.

    ZHOU J M. Influence of blasting vibration on the stability of slope with structure planes [D]. Chongqing: Chongqing University, 2015.
    [12] 何理, 钟冬望, 陈晨, 等. 岩质高边坡开挖施工的爆破振动监测与分析 [J]. 金属矿山, 2017, 46(1): 6–10. DOI: 10.3969/j.issn.1001-1250.2017.01.002.

    HE L, ZHONG D W, CHEN C, et al. Monitoring and analysis of blasting vibration in high rocky slope excavation [J]. Metal Mine, 2017, 46(1): 6–10. DOI: 10.3969/j.issn.1001-1250.2017.01.002.
    [13] 周文海, 梁瑞, 余建平, 等. 边坡抛掷爆破峰值质点振动速度的无量纲分析 [J]. 爆炸与冲击, 2019, 39(5): 054201. DOI: 10.11883/bzycj-2017-0373.

    ZHOU W H, LIANG R, YU J P, et al. Dimensionless analysis on peak particle vibration velocity induced by slope casting blast [J]. Explosion and Shock Waves, 2019, 39(5): 054201. DOI: 10.11883/bzycj-2017-0373.
    [14] 韩亮, 辛崇伟, 梁书锋, 等. 深孔台阶爆破近远区振动特征的试验研究 [J]. 振动与冲击, 2017, 36(8): 65–70. DOI: 10.13465/j.cnki.jvs.2017.08.011.

    HAN L, XIN C W, LIANG S F, et al. Experimental study on vibration characteristics of deep hole bench blasting in both near and far field [J]. Journal of Vibration and Shock, 2017, 36(8): 65–70. DOI: 10.13465/j.cnki.jvs.2017.08.011.
    [15] 何理, 钟冬望, 刘建程, 等. 微差爆破试验及爆破振动能量的小波包分析 [J]. 金属矿山, 2014, 43(6): 10–15.

    HE L, ZHONG D W, LIU J C, et al. Millisecond blasting tests and wavelet packet analysis of blasting vibration energy [J]. Metal Mine, 2014, 43(6): 10–15.
    [16] SINGH P K, ROY M P. Damage to surface structures due to blast vibration [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(6): 949–961. DOI: 10.1016/j.ijrmms.2010.06.010.
    [17] LU W B, LUO Y, CHEN M, et al. An introduction to Chinese safety regulations for blasting vibration [J]. Environmental Earth Sciences, 2012, 67(7): 1951–1959. DOI: 10.1007/s12665-012-1636-9.
    [18] 武旭, 张云鹏, 郭奇峰. 台阶地形爆破振动放大与衰减效应研究 [J]. 爆炸与冲击, 2017, 37(6): 1017–1022. DOI: 10.11883/1001-1455(2017)06-1017-06.

    WU X, ZHANG Y P, GUO Q F. Amplification and attenuation effect of blasting vibration on step topography [J]. Explosion and Shock Waves, 2017, 37(6): 1017–1022. DOI: 10.11883/1001-1455(2017)06-1017-06.
    [19] 陈明, 卢文波, 李鹏, 等. 岩质边坡爆破振动速度的高程放大效应研究 [J]. 岩石力学与工程学报, 2011, 30(11): 2189–2195.

    CHEN M, LU W B, LI P, et al. Elevation amplification effect of blasting vibration velocity in rock slope [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2189–2195.
    [20] 叶海旺, 袁尔君, 雷涛, 等. 基于量纲分析的爆破振动质点峰值速度预测公式 [J]. 金属矿山, 2019, 48(5): 56–61. DOI: 10.19614/j.cnki.jsks.201905010.

    YE H W, YUAN E J, LEI T, et al. Blasting vibration peak particle velocity prediction formula based on dimensional analysis method [J]. Metal Mine, 2019, 48(5): 56–61. DOI: 10.19614/j.cnki.jsks.201905010.
    [21] 胡刚, 吴云龙. 爆破地震振动控制的一种方法 [J]. 煤炭技术, 2004, 23(4): 104–106. DOI: 10.3969/j.issn.1008-8725.2004.04.065.

    HU G, WU Y L. A new method of the control of the earthquake vibration caused by explosive [J]. Coal Technology, 2004, 23(4): 104–106. DOI: 10.3969/j.issn.1008-8725.2004.04.065.
    [22] 唐海, 李海波. 反映高程放大效应的爆破振动公式研究 [J]. 岩土力学, 2011, 32(3): 820–824. DOI: 10.3969/j.issn.1000-7598.2011.03.030.

    TANG H, LI H B. Study of blasting vibration formula of reflecting amplification effect on elevation [J]. Rock and Soil Mechanics, 2011, 32(3): 820–824. DOI: 10.3969/j.issn.1000-7598.2011.03.030.
    [23] 钟冬望, 何理, 操鹏, 等. 基于精确毫秒延时控制的爆破降振试验研究 [J]. 煤炭学报, 2015, 40(S1): 107–11. DOI: 10.13225/j.cnki.jccs.2014.1447.

    ZHONG D W, HE L, CAO P, et al. Experimental study of reducing vibration intensity based on controlled blasting with precise time delay [J]. Journal of China Coal Society, 2015, 40(S1): 107–11. DOI: 10.13225/j.cnki.jccs.2014.1447.
    [24] 杨巨文, 白润才, 于永江, 等. 含弱层岩质边坡自振周期反演试验及数值验证 [J]. 煤炭学报, 2015, 40(S1): 69–75. DOI: 10.13225/j.cnki.jccs.2014.1249.

    YANG J W, BAI R C, YU Y J, et al. Inversion test and numerical verification on natural period of rock slope with weak layers [J]. Journal of China Coal Society, 2015, 40(S1): 69–75. DOI: 10.13225/j.cnki.jccs.2014.1249.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  3979
  • HTML全文浏览量:  1958
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-26
  • 修回日期:  2019-12-16
  • 网络出版日期:  2020-06-25
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回