Design and crashworthiness analysis of thin-walled tubes based on a shrimp chela structure
-
摘要: 为提高薄壁管的耐撞性能,以虾螯为生物原型,通过结构仿生原理设计了仿虾螯结构多晶胞薄壁管。以晶胞数(2~6)和冲击角度(0°、10°、20°、30°)为试验因素,利用有限元法分析了仿虾螯结构多晶胞薄壁管在不同冲击角度下的耐撞性能,通过落锤试验验证了仿真结果的可靠性。结果表明:2晶胞仿生管在轴向和斜向载荷下的耐撞性最优。同工况条件下,减少晶胞数可降低仿生管峰值载荷。斜向冲击载荷下,仿生管保持稳定叠缩变形模式的时间随晶胞数的增加而缩短,其耐撞性能随晶胞数的增加而降低。虾螯结构特征与普通圆管的结合有效提高了仿虾螯结构多晶胞薄壁管的耐撞性能。Abstract: In order to improve the crashworthiness of thin-walled tubes, the multi-cell bionic thin-walled tubes based on a shrimp chela structure were designed by the principle of structural bionics. By taking the cell number (2−6) and the impact angle (0°, 10°, 20°, 30°) as experimental factors, the finite element method was used to simulate the crashworthiness of the bionic tubes, the reliability of the results by the simulation test was verified by the drop-weight tests. The results show that the two-cell bionic tube has the best crashworthiness under axial and oblique loads. Under the same working conditions, the reduction of the number of unit cells can reduce the peak loads of the bionic tubes. Under the oblique impact load, the time for the bionic tubes to maintain the stable collapse deformation mode is shortened with the increase of the number of the cells, and the crashworthiness of the bionic tubes decreases with the increase of the number of the cells. The combination of a shrimp cheek structure and an ordinary circular tube effectively improves the crashworthiness of the designed structures. So it can provide a reference for the design of energy-absorbing components in vehicles.
-
Key words:
- thin-walled tube /
- structural bionic /
- crashworthiness /
- drop-hammer test /
- cell
-
表 1 2~6晶胞BT和CT在不同角度冲击载荷下的Ea、m及Ea,s的仿真试验值
Table 1. Simulation test values of Ea, m and Ea,s of BTs with 2−6 cells and CTs under different-angle impact loads
α/(°) 薄壁管 Ea/kJ m/kg Ea,s/(kJ·kg−1) α/(°) 薄壁管 Ea/kJ m/kg Ea,s/(kJ·kg−1) 0 BT-2 6.01 0.223 10 26.96 20 BT-2 4.92 0.223 10 22.06 BT-3 7.11 0.247 10 28.77 BT-3 5.85 0.247 10 23.66 BT-4 8.28 0.271 20 30.53 BT-4 5.68 0.271 20 20.93 BT-5 8.07 0.295 20 31.61 BT-5 3.41 0.295 20 11.56 BT-6 10.29 0.319 20 32.23 BT-6 4.31 0.319 20 13.51 CT 1.50 0.094 99 15.77 CT 1.02 0.094 99 10.70 10 BT-2 5.42 0.223 10 24.28 30 BT-2 2.01 0.223 10 9.00 BT-3 6.50 0.247 10 26.30 BT-3 2.08 0.247 10 8.43 BT-4 7.54 0.271 20 27.82 BT-4 2.05 0.271 20 7.54 BT-5 8.58 0.295 20 29.08 BT-5 2.39 0.295 20 8.09 BT-6 9.51 0.319 20 29.78 BT-6 2.53 0.319 20 7.92 CT 1.33 0.094 99 14.00 CT 0.63 0.094 99 6.67 表 2 2~6晶胞BT与CT在不同角度冲击载荷下的Fm、Fp及η的仿真试验值
Table 2. Simulation test values of Fm, Fp and η of BTs with 2−6 cells and CTs under different-angle impact loads
α/(°) 薄壁管 Fm/kN Fp/kN η/% α/(°) 薄壁管 Fm/kN Fp/kN η/% 0 BT-2 59.90 123.07 48.67 20 BT-2 51.64 66.30 77.88 BT-3 69.39 137.52 50.46 BT-3 60.37 84.94 71.08 BT-4 82.41 152.35 54.09 BT-4 65.19 97.72 66.71 BT-5 95.09 167.26 56.85 BT-5 53.92 105.04 51.33 BT-6 101.88 181.88 56.02 BT-6 64.09 121.03 52.95 CT 15.30 57.82 26.47 CT 12.51 19.64 63.68 10 BT-2 54.82 67.57 81.13 30 BT-2 29.91 59.52 50.25 BT-3 54.89 76.82 71.46 BT-3 31.28 67.28 46.48 BT-4 77.15 92.93 83.02 BT-4 32.27 67.49 47.82 BT-5 85.19 103.23 82.52 BT-5 38.38 85.04 45.13 BT-6 97.42 114.13 85.37 BT-6 42.18 93.64 45.04 CT 14.55 21.86 66.52 CT 9.06 17.98 50.37 -
[1] BARTCZAK B, GIERCZYCKA-ZBROZEK D, GRONOSTAJSKI Z, et al. The use of thin-walled sections for energy absorbing components: a review [J]. Archives of Civil and Mechanical Engineering, 2010, 10(4): 5–19. DOI: 10.1016/S1644-9665(12)60027-2. [2] BAROUTAJI A, SAJJIA M, OLABI A G. On the crashworthiness performance of thin-walled energy absorbers: recent advances and future developments [J]. Thin-Walled Structures, 2017, 118: 137–163. DOI: 10.1016/j.tws.2017.05.018. [3] 王博, 周才华, 由衷. 预折纹管在低速冲击载荷作用下的能量吸收 [J]. 爆炸与冲击, 2015, 35(4): 473–481. DOI: 10.11883/1001-1455(2015)04-0473-09.WANG B, ZHOU C H, YOU Z. Energy absorption of pre-folded origami under low speed impact [J]. Explosion and Shock Waves, 2015, 35(4): 473–481. DOI: 10.11883/1001-1455(2015)04-0473-09. [4] 郝文乾, 卢进帅, 黄睿, 等. 轴向冲击载荷下薄壁折纹管的屈曲模态与吸能 [J]. 爆炸与冲击, 2015, 35(3): 380–385. DOI: 10.11883/1001-1455-(2015)03-0380-06.HAO W Q, LU J S, HUANG R, et al. Buckling and energy absorption properties of thin-walled corrugated tubes under axial impacting [J]. Explosion and Shock Waves, 2015, 35(3): 380–385. DOI: 10.11883/1001-1455-(2015)03-0380-06. [5] 韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性 [J]. 爆炸与冲击, 2019, 39(1): 013103. DOI: 10.11883/bzycj-2017-0281.HAN H L, ZHANG X C, WANG P. Dynamic responses and energy absorption properties of honeycombs with negative Poisson’s ratio [J]. Explosion and Shock Waves, 2019, 39(1): 013103. DOI: 10.11883/bzycj-2017-0281. [6] 李松晏, 郑志军, 虞吉林. 高速列车吸能结构设计和耐撞性分析 [J]. 爆炸与冲击, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07.LI S Y, ZHENG Z J, YU J L. Energy-absorbing structure design and crashworthiness analysis of high-speed trains [J]. Explosion and Shock Waves, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07. [7] NAJAFI A, RAIS-ROHANI M. Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes [J]. Thin-Walled Structures, 2011, 49(1): 1–12. DOI: 10.1016/j.tws.2010.07.002. [8] FANG J G, GAO Y K, SUN G Y, et al. Dynamic crashing behavior of new extrudable multi-cell tubes with a functionally graded thickness [J]. International Journal of Mechanical Sciences, 2015, 103: 63–73. DOI: 10.1016/j.ijmecsci.2015.08.029. [9] LI G Y, XU F X, SUN G Y, et al. A comparative study on thin-walled structures with functionally graded thickness (FGT) and tapered tubes withstanding oblique impact loading [J]. International Journal of Impact Engineering, 2015, 77: 68–83. DOI: 10.1016/j.ijimpeng.2014.11.003. [10] 亓昌, 董方亮, 杨姝, 等. 锥形多胞薄壁管斜向冲击吸能特性仿真研究 [J]. 振动与冲击, 2012, 31(24): 102–107. DOI: 10.3969/j.issn.1000-3835.2012.24.021.QI C, DONG F L, YANG S, et al. Energy-absorbing characteristics of a tapered multi-cell thin-walled tube under oblique impact [J]. Journal of Vibration and Shock, 2012, 31(24): 102–107. DOI: 10.3969/j.issn.1000-3835.2012.24.021. [11] 高强, 王良模, 王源隆, 等. 椭圆形泡沫填充薄壁管斜向冲击吸能特性仿真研究 [J]. 振动与冲击, 2017, 36(2): 201–206. DOI: 10.13465/j.cnki.jvs.2017.02.033.GAO Q, WANG L M, WANG Y L, et al. Energy-absorbing characteristics of foam-filled oval tubes under oblique impact [J]. Journal of Vibration and Shock, 2017, 36(2): 201–206. DOI: 10.13465/j.cnki.jvs.2017.02.033. [12] 任露泉, 梁云虹. 仿生学导论[M]. 北京: 科学出版社, 2016: 32−65. [13] 邹猛, 于用军, 张荣荣, 等. 仿牛角结构薄壁管吸能特性仿真分析 [J]. 吉林大学学报(工学版), 2015, 45(6): 1863–1868. DOI: 10.13229/j.cnki.jdxbgxb201506020.ZOU M, YU Y J, ZHANG R R, et al. Simulation analysis of energy-absorption properties of thin-walled tube based on horn structure [J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(6): 1863–1868. DOI: 10.13229/j.cnki.jdxbgxb201506020. [14] SONG J F, XU S C, WANG H X, et al. Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures [J]. Thin-Walled Structures, 2018, 125: 76–88. DOI: 10.1016/j.tws.2018.01.010. [15] YIN H F, XIAO Y Y, WEN G L, et al. Crushing analysis and multi-objective optimization design for bionic thin-walled structure [J]. Materials and Design, 2015, 87: 825–834. DOI: 10.1016/j.matdes.2015.08.095. [16] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer [J]. Science, 2012, 336(6086): 1275–1280. DOI: 10.1126/science.1218764. [17] PATEK S N, CALDWELL R L. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp odontodactylus scyllarus [J]. Journal of Experimental Biology, 2005, 208(19): 3655–3664. DOI: 10.1242/jeb.01831. [18] SADJAD P, MOHAMMAD-HOSSEIN E, SOBHAN E M. Crashworthiness of double-cell conical tubes with different cross sections subjected to dynamic axial and oblique loads [J]. Journal of Central South University, 2018, 25(3): 632–645. DOI: 10.1007/s11771-018-3766-z. [19] CHEN B C, ZOU M, LIU G M, et al. Experimental study on energy absorption of bionic tubes inspired by bamboo structures under axial crushing [J]. International Journal of Impact Engineering, 2018, 115: 48–57. DOI: 10.1016/j.ijimpeng.2018.01.005.