仿虾螯结构薄壁管设计及耐撞性分析

杨欣 范晓文 许述财 黄晗 霍鹏

杨欣, 范晓文, 许述财, 黄晗, 霍鹏. 仿虾螯结构薄壁管设计及耐撞性分析[J]. 爆炸与冲击, 2020, 40(4): 043301. doi: 10.11883/bzycj-2019-0280
引用本文: 杨欣, 范晓文, 许述财, 黄晗, 霍鹏. 仿虾螯结构薄壁管设计及耐撞性分析[J]. 爆炸与冲击, 2020, 40(4): 043301. doi: 10.11883/bzycj-2019-0280
YANG Xin, FAN Xiaowen, XU Shucai, HUANG Han, HUO Peng. Design and crashworthiness analysis of thin-walled tubes based on a shrimp chela structure[J]. Explosion And Shock Waves, 2020, 40(4): 043301. doi: 10.11883/bzycj-2019-0280
Citation: YANG Xin, FAN Xiaowen, XU Shucai, HUANG Han, HUO Peng. Design and crashworthiness analysis of thin-walled tubes based on a shrimp chela structure[J]. Explosion And Shock Waves, 2020, 40(4): 043301. doi: 10.11883/bzycj-2019-0280

仿虾螯结构薄壁管设计及耐撞性分析

doi: 10.11883/bzycj-2019-0280
基金项目: 国家自然科学基金(51305223);中国博士后科学基金(2018M641338);河北农业大学青年科学基金(2013QNR001)
详细信息
    作者简介:

    杨 欣(1974- ),男,博士,教授,yangxin@hebau.edu.cn

    通讯作者:

    许述财(1978- ),男,博士,副研究员,xushc@tsinghua.edu.cn

  • 中图分类号: O382;U463.9

Design and crashworthiness analysis of thin-walled tubes based on a shrimp chela structure

  • 摘要: 为提高薄壁管的耐撞性能,以虾螯为生物原型,通过结构仿生原理设计了仿虾螯结构多晶胞薄壁管。以晶胞数(2~6)和冲击角度(0°、10°、20°、30°)为试验因素,利用有限元法分析了仿虾螯结构多晶胞薄壁管在不同冲击角度下的耐撞性能,通过落锤试验验证了仿真结果的可靠性。结果表明:2晶胞仿生管在轴向和斜向载荷下的耐撞性最优。同工况条件下,减少晶胞数可降低仿生管峰值载荷。斜向冲击载荷下,仿生管保持稳定叠缩变形模式的时间随晶胞数的增加而缩短,其耐撞性能随晶胞数的增加而降低。虾螯结构特征与普通圆管的结合有效提高了仿虾螯结构多晶胞薄壁管的耐撞性能。
  • 图  1  虾螯截面结构

    Figure  1.  The structure of the cross section of the chela

    图  2  晶胞结构

    Figure  2.  The structure of a cell

    图  3  仿生管的结构及尺寸

    Figure  3.  The structure and size of a bionic tube

    图  4  具有不同晶胞数的仿生管(BT)的截面结构图

    Figure  4.  Cross-sectional structures of bionic tubes (BTs) with different cell numbers

    图  5  仿生管的有限元模型

    Figure  5.  The finite element model for the bionic tube

    图  6  BT有限元模型可靠性验证流程图

    Figure  6.  Reliability verification flow chart of the finite element model for BT

    图  7  BT-4样件

    Figure  7.  Samples of BT-4

    图  8  落锤冲击试验机

    Figure  8.  Drop hammer impact tester

    图  9  BT-4的仿真与实物试验的载荷-位移曲线对比

    Figure  9.  Comparison of load-displacement curves between simulation and physical test for BT-4

    图  10  不同冲击角度(由左至右分别为0°、10°、20°和30°)下2~6晶胞的BT和CT的变形模式

    Figure  10.  Deformation modes of the BTs with 2−6 cells and CTs under impact angles of 0°, 10°, 20° and 30° from left to right

    图  11  不同冲击角度下2~6晶胞的BT和CT的比吸能-位移曲线

    Figure  11.  Specific energy absorption-displacement curves of the BTs with 2−6 cells and CTs under different impact angles

    图  12  不同冲击角度下2~6晶胞的BT和CT的载荷-位移曲线

    Figure  12.  Force-displacement curves of the BTs with 2−6 cells and CTs under different impact angles

    图  13  各晶胞数BT的最大比吸能-冲击角度曲线

    Figure  13.  Maximum specific energy absorption-impact angle curves of BTs with different number of cells

    图  14  不同冲击角度下各晶胞数BT的权值W

    Figure  14.  Weights of BTs with different number of the cells at different impact angles

    表  1  2~6晶胞BT和CT在不同角度冲击载荷下的Ea、m及Ea,s的仿真试验值

    Table  1.   Simulation test values of Ea, m and Ea,s of BTs with 2−6 cells and CTs under different-angle impact loads

    α/(°)薄壁管Ea/kJm/kgEa,s/(kJ·kg−1)α/(°)薄壁管Ea/kJm/kgEa,s/(kJ·kg−1)
    0BT-2 6.010.223 1026.9620BT-24.920.223 1022.06
    BT-3 7.110.247 1028.77BT-35.850.247 1023.66
    BT-4 8.280.271 2030.53BT-45.680.271 2020.93
    BT-5 8.070.295 2031.61BT-53.410.295 2011.56
    BT-610.290.319 2032.23BT-64.310.319 2013.51
    CT 1.500.094 9915.77CT1.020.094 9910.70
    10BT-2 5.420.223 1024.2830BT-22.010.223 10 9.00
    BT-3 6.500.247 1026.30BT-32.080.247 10 8.43
    BT-4 7.540.271 2027.82BT-42.050.271 20 7.54
    BT-5 8.580.295 2029.08BT-52.390.295 20 8.09
    BT-6 9.510.319 2029.78BT-62.530.319 20 7.92
    CT 1.330.094 9914.00CT0.630.094 99 6.67
    下载: 导出CSV

    表  2  2~6晶胞BT与CT在不同角度冲击载荷下的Fm、Fp及η的仿真试验值

    Table  2.   Simulation test values of Fm, Fp and η of BTs with 2−6 cells and CTs under different-angle impact loads

    α/(°)薄壁管Fm/kNFp/kNη/%α/(°)薄壁管Fm/kNFp/kNη/%
    0BT-2 59.90123.0748.6720BT-251.64 66.3077.88
    BT-3 69.39137.5250.46BT-360.37 84.9471.08
    BT-4 82.41152.3554.09BT-465.19 97.7266.71
    BT-5 95.09167.2656.85BT-553.92105.0451.33
    BT-6101.88181.8856.02BT-664.09121.0352.95
    CT 15.30 57.8226.47CT12.51 19.6463.68
    10BT-2 54.82 67.5781.1330BT-229.91 59.5250.25
    BT-3 54.89 76.8271.46BT-331.28 67.2846.48
    BT-4 77.15 92.9383.02BT-432.27 67.4947.82
    BT-5 85.19103.2382.52BT-538.38 85.0445.13
    BT-6 97.42114.1385.37BT-642.18 93.6445.04
    CT 14.55 21.8666.52CT 9.06 17.9850.37
    下载: 导出CSV
  • [1] BARTCZAK B, GIERCZYCKA-ZBROZEK D, GRONOSTAJSKI Z, et al. The use of thin-walled sections for energy absorbing components: a review [J]. Archives of Civil and Mechanical Engineering, 2010, 10(4): 5–19. DOI: 10.1016/S1644-9665(12)60027-2.
    [2] BAROUTAJI A, SAJJIA M, OLABI A G. On the crashworthiness performance of thin-walled energy absorbers: recent advances and future developments [J]. Thin-Walled Structures, 2017, 118: 137–163. DOI: 10.1016/j.tws.2017.05.018.
    [3] 王博, 周才华, 由衷. 预折纹管在低速冲击载荷作用下的能量吸收 [J]. 爆炸与冲击, 2015, 35(4): 473–481. DOI: 10.11883/1001-1455(2015)04-0473-09.

    WANG B, ZHOU C H, YOU Z. Energy absorption of pre-folded origami under low speed impact [J]. Explosion and Shock Waves, 2015, 35(4): 473–481. DOI: 10.11883/1001-1455(2015)04-0473-09.
    [4] 郝文乾, 卢进帅, 黄睿, 等. 轴向冲击载荷下薄壁折纹管的屈曲模态与吸能 [J]. 爆炸与冲击, 2015, 35(3): 380–385. DOI: 10.11883/1001-1455-(2015)03-0380-06.

    HAO W Q, LU J S, HUANG R, et al. Buckling and energy absorption properties of thin-walled corrugated tubes under axial impacting [J]. Explosion and Shock Waves, 2015, 35(3): 380–385. DOI: 10.11883/1001-1455-(2015)03-0380-06.
    [5] 韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性 [J]. 爆炸与冲击, 2019, 39(1): 013103. DOI: 10.11883/bzycj-2017-0281.

    HAN H L, ZHANG X C, WANG P. Dynamic responses and energy absorption properties of honeycombs with negative Poisson’s ratio [J]. Explosion and Shock Waves, 2019, 39(1): 013103. DOI: 10.11883/bzycj-2017-0281.
    [6] 李松晏, 郑志军, 虞吉林. 高速列车吸能结构设计和耐撞性分析 [J]. 爆炸与冲击, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07.

    LI S Y, ZHENG Z J, YU J L. Energy-absorbing structure design and crashworthiness analysis of high-speed trains [J]. Explosion and Shock Waves, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07.
    [7] NAJAFI A, RAIS-ROHANI M. Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes [J]. Thin-Walled Structures, 2011, 49(1): 1–12. DOI: 10.1016/j.tws.2010.07.002.
    [8] FANG J G, GAO Y K, SUN G Y, et al. Dynamic crashing behavior of new extrudable multi-cell tubes with a functionally graded thickness [J]. International Journal of Mechanical Sciences, 2015, 103: 63–73. DOI: 10.1016/j.ijmecsci.2015.08.029.
    [9] LI G Y, XU F X, SUN G Y, et al. A comparative study on thin-walled structures with functionally graded thickness (FGT) and tapered tubes withstanding oblique impact loading [J]. International Journal of Impact Engineering, 2015, 77: 68–83. DOI: 10.1016/j.ijimpeng.2014.11.003.
    [10] 亓昌, 董方亮, 杨姝, 等. 锥形多胞薄壁管斜向冲击吸能特性仿真研究 [J]. 振动与冲击, 2012, 31(24): 102–107. DOI: 10.3969/j.issn.1000-3835.2012.24.021.

    QI C, DONG F L, YANG S, et al. Energy-absorbing characteristics of a tapered multi-cell thin-walled tube under oblique impact [J]. Journal of Vibration and Shock, 2012, 31(24): 102–107. DOI: 10.3969/j.issn.1000-3835.2012.24.021.
    [11] 高强, 王良模, 王源隆, 等. 椭圆形泡沫填充薄壁管斜向冲击吸能特性仿真研究 [J]. 振动与冲击, 2017, 36(2): 201–206. DOI: 10.13465/j.cnki.jvs.2017.02.033.

    GAO Q, WANG L M, WANG Y L, et al. Energy-absorbing characteristics of foam-filled oval tubes under oblique impact [J]. Journal of Vibration and Shock, 2017, 36(2): 201–206. DOI: 10.13465/j.cnki.jvs.2017.02.033.
    [12] 任露泉, 梁云虹. 仿生学导论[M]. 北京: 科学出版社, 2016: 32−65.
    [13] 邹猛, 于用军, 张荣荣, 等. 仿牛角结构薄壁管吸能特性仿真分析 [J]. 吉林大学学报(工学版), 2015, 45(6): 1863–1868. DOI: 10.13229/j.cnki.jdxbgxb201506020.

    ZOU M, YU Y J, ZHANG R R, et al. Simulation analysis of energy-absorption properties of thin-walled tube based on horn structure [J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(6): 1863–1868. DOI: 10.13229/j.cnki.jdxbgxb201506020.
    [14] SONG J F, XU S C, WANG H X, et al. Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures [J]. Thin-Walled Structures, 2018, 125: 76–88. DOI: 10.1016/j.tws.2018.01.010.
    [15] YIN H F, XIAO Y Y, WEN G L, et al. Crushing analysis and multi-objective optimization design for bionic thin-walled structure [J]. Materials and Design, 2015, 87: 825–834. DOI: 10.1016/j.matdes.2015.08.095.
    [16] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer [J]. Science, 2012, 336(6086): 1275–1280. DOI: 10.1126/science.1218764.
    [17] PATEK S N, CALDWELL R L. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp odontodactylus scyllarus [J]. Journal of Experimental Biology, 2005, 208(19): 3655–3664. DOI: 10.1242/jeb.01831.
    [18] SADJAD P, MOHAMMAD-HOSSEIN E, SOBHAN E M. Crashworthiness of double-cell conical tubes with different cross sections subjected to dynamic axial and oblique loads [J]. Journal of Central South University, 2018, 25(3): 632–645. DOI: 10.1007/s11771-018-3766-z.
    [19] CHEN B C, ZOU M, LIU G M, et al. Experimental study on energy absorption of bionic tubes inspired by bamboo structures under axial crushing [J]. International Journal of Impact Engineering, 2018, 115: 48–57. DOI: 10.1016/j.ijimpeng.2018.01.005.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  5115
  • HTML全文浏览量:  2448
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-15
  • 修回日期:  2019-11-19
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回