A numerical simulation method for long rods penetrating into ceramic targets
-
摘要: 陶瓷材料具有高强度和低密度等特点,抗弹性能优越,被广泛用于各类装甲中。长杆弹撞击陶瓷靶时会发生径向流动、质量显著侵蚀而无明显侵彻的界面击溃现象,是陶瓷抗侵彻性能研究中具有重要研究价值的特殊现象。利用有限元软件AUTODYN建立了长杆弹撞击陶瓷靶的二维轴对称计算模型,采用Lagrange和光滑粒子流体动力学(smooth particle hydrodynamics, SPH)算法,模拟了柱形钨合金长杆弹撞击带盖板的碳化硅陶瓷,通过改变长杆弹的撞击速度,得到了界面击溃、驻留转侵彻和直接侵彻3个不同现象。讨论了不同建模算法、边界条件以及材料参数对模拟结果的影响。通过网格收敛性验证和与实验结果进行拟合,综合验证了计算模型中算法、边界条件和参数设定的可靠性。结果表明,在建模中若同时使用SPH算法和Lagrange算法,需要考虑粒子和网格大小对于模拟结果的影响。针对长杆弹撞击陶瓷靶的界面击溃模拟,不建议对陶瓷材料采用SPH粒子建模。相关建模和参数选择方法对后续陶瓷抗侵彻/界面击溃的数值模拟具有重要的指导意义。Abstract: Ceramics are widely used in armors because of high strength, low density and excellent ballistic performance. When long rods impact the ceramics, the long rods will flow radially along the ceramic surfaces without significant penetration. The special phenomenon is called interface defeat which has important practice application in the anti-penetration performance. For the long rods impacting the ceramic targets, a two-dimensional axisymmetric numerical model in which both the Lagrange method and smooth particle hydrodynamics (SPH) method are used, is established by using the software AUTODYN. The established model is applied to simulate the penetration of the long rod into the silicon carbide ceramic with a cover plate. By changing the impact velocity of the long rod, three different phenomena are obtained including interface defeat, dwell to penetration and direct penetration. Through the verification of mesh convergence and the comparison of the numerical results to the experimental results, the reliability of the algorithm, boundary conditions and parameter settings in the numerical model is comprehensively verified. The simulated results show that if the SPH and Lagrange methods are used at the same time, the influences of particle and mesh sizes need to be considered. It is not recommended to use the SPH method for simulating the interface defeat of the ceramic targets. The methods of the modeling and parameter selections are helpful for the subsequent simulations on ceramic anti-penetration and interface defeat.
-
Key words:
- ceramic armor /
- interface defeat /
- dwell to penetration /
- SPH method
-
ρ0/(g·cm−3) K1/GPa K2/GPa T1/GPa G/GPa σHEL/GPa σ1/GPa p1/GPa σ2/GPa 3.215 220 361 220 193 11.7 7.1 2.5 12.2 p2/GPa C ${\sigma _{{\rm{f}},{\rm{max}}}}$/GPa α σt/GPa ${\sigma _{{\rm{f}},{\rm{max}}}}$ p3/GPa β 10 0.009 1.30 0.4 -0.75 0.6 99.75 1 材料 ρ0/(g·cm−3) 状态方程 K/GPa γ c0/(km·s−1) s 钨合金 17.600 Shock 285 1.540 4.029 1.237 4340钢 7.830 Linear 159 材料 T0/K cp/(J·kg−1·K−1) 强度模型 G/GPa A/GPa B/GPa 钨合金 300 134 J-C模型 160 1.506 0.177 4340钢 300 477 J-C模型 77 0.792 0.510 材料 n Z m Tm/K ${\dot \varepsilon _0}$/s−1 钨合金 0.120 0.016 1.000 1.723×103 1.000 4340钢 0.260 0.014 1.030 1.793×103 1.000 材料 失效模型 D1 D2 D3 D4 D5 钨合金 J-C 0.160 3.130 −2.040 0.007 0.370 4340钢 J-C 0.050 3.440 −2.120 0.003 0.610 ρ0/(g·cm−3) K/GPa G/GPa σy/GPa εf 8.08 140 77 2.6 0.4 表 4 网格收敛性模拟结果
Table 4. Simulation results of mesh convergence
粒子大小/mm 网格收敛性 网格与粒子尺寸之比为0.5 网格与粒子尺寸之比为1 网格与粒子尺寸之比为2 0.125 驻留转侵彻 驻留转侵彻 始终保持界面击溃 0.100 无界面击溃 驻留转侵彻 始终保持界面击溃 0.050 无界面击溃 驻留转侵彻 始终保持界面击溃 -
[1] 焦文俊, 陈小伟. 长杆高速侵彻问题研究进展 [J]. 力学进展, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021.JIAO W J, CHEN X W. Review on long-rod penetration at hypervelocity [J]. Advances in Mechanics, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021. [2] WIKINS W L. Second progress report of light armor program: UCRL-50349 [R]. Livermore, CA, USA: Livermore National Laboratory, 1964. [3] HAUVER G, GOOCH W, NETHERWOOD P, et al. Variation of target resistance during long-rod penetration into ceramics [C] // The 13th International Symposium on Ballistics. Sundyberg, Sweden, 1992: 257−264. [4] ROSEBERG Z, TSALIAH J. Applying Tate's model for the interaction of long rod projectiles with ceramic targets [J]. International Journal of Impact Engineering, 1990, 9(2): 247–251. DOI: 10.1016/0734-743X(90)90016-O. [5] ANDERSON Jr C E, WALKER J D. An analytical model for dwell and interface defeat [J]. International Journal of Impact Engineering, 2005, 31(9): 1119–1132. DOI: 10.1016/j.ijimpeng.2004.07.013. [6] LUNDBERG P, RENSTRÖM R, LUNDBERG B. Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration [J]. International Journal of Impact Engineering, 2000, 24(3): 259–275. DOI: 10.1016/S0734-743X(99)00152-9. [7] LUNDBERG P, LUNDBERG B. Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials [J]. International Journal of Impact Engineering, 2005, 31(7): 781–792. DOI: 10.1016/j.ijimpeng.2004.06.003. [8] LUNDBERG P, RENSTRÖM R, LUNDBERG B. Impact of conical tungsten projectiles on flat silicon carbide targets: transition from interface defeat to penetration [J]. International Journal of Impact Engineering, 2006, 32(11): 1842–1856. DOI: 10.1016/j.ijimpeng.2005.04.004. [9] LUNDBERG P, RENSTRÖM R, ANDERSSON O. Influence of length scale on the transition from interface defeat to penetration in unconfined ceramic targets [J]. Journal of Applied Mechanics, 2013, 80(3): 979–985. DOI: 10.1115/1.4023345. [10] LUNDBERG P, RENSTRÖM R, ANDERSSON O. Influence of confining prestress on the transition from interface defeat to penetration in ceramic targets [J]. Defence Technology, 2016, 12(3): 263–271. DOI: 10.1016/j.dt.2016.02.002. [11] BEHNER T, ANDERSON Jr C E, HOLMQUIST T J, et al. Interface defeat for unconfined SiC ceramics [C] // The 24th International Symposium on Ballistics. New Orleans, 2008: 298−306. [12] BEHNER T, ANDERSON Jr C E, HOLMQUIST T J, et al. Penetration dynamics and interface defeat capability of silicon carbide against long Rod impact [J]. International Journal of Impact Engineering, 2011, 38(6): 419–425. DOI: 10.1016/j.ijimpeng.2010.10.011. [13] ANDERSON Jr C E, BEHNER T, HOLMQUIST T J, et al. Interface defeat of long rods impacting oblique silicon carbide [C] // The 26th International Symposium on Ballistics. Miami, Fl, USA, 2011, 81(6): 1728−1735. DOI: 10.1007/978-3-642-19665-2_4. [14] LI J C, CHEN X W, NING F, et al. On the transition from interface defeat to penetration in the impact of long rod onto ceramic targets [J]. International Journal of Impact Engineering, 2015, 83(8): 37–46. DOI: 10.1016/j.ijimpeng.2015.04.003. [15] LI J C, CHEN X W, NING F. Comparative analysis on the interface defeat between the cylindrical and conical-nosed long rods [J]. International Journal of Protective Structures, 2014, 5(1): 21–46. DOI: 10.1260/2041-4196.5.1.21. [16] LI J C, CHEN X W. Theoretical analysis of projectile-target interface defeat and transition to penetration by long rods due to oblique impacts of ceramic targets [J]. International Journal of Impact Engineering, 2017, 106(10): 53–63. DOI: 10.1016/j.ijimpeng.2017.03.013. [17] 谈梦婷, 张先锋, 何勇, 等. 长杆弹撞击装甲陶瓷的界面击溃效应数值模拟 [J]. 兵工学报, 2016, 37(4): 627–634. DOI: 10.3969/j.issn.1000-1093.2016.04.008.TAN M T, ZHANG X F, HE Y, et al. Numerical simulation on interface defeat of ceramic armor impacted by long-rod projectile [J]. Acta Armamentarii, 2016, 37(4): 627–634. DOI: 10.3969/j.issn.1000-1093.2016.04.008. [18] 谈梦婷, 张先锋, 包阔, 等. 装甲陶瓷的界面击溃效应 [J]. 力学进展, 2019, 49(1): 65–71. DOI: 10.6052/1000-0992-17-015.TAN M T, ZHANG X F, BAO K, et al. Interface defeat of ceramic armor [J]. Advances in Mechanics, 2019, 49(1): 65–71. DOI: 10.6052/1000-0992-17-015. [19] HOLMQUIST T J, JOHNSON G R. Response of silicon carbide to high velocity impact [J]. Journal of Applied Physics, 2002, 91(9): 5858–5866. DOI: 10.1063/1.1468903. [20] QUAN X, CLEGG R A, COWLER M S, et al. Numerical simulation of long rods impacting silicon carbide targets using JH-1 model [J]. International Journal of Impact Engineering, 2006, 33(1): 634–644. DOI: 10.1016/j.ijimpeng.2006.09.011. [21] GOH W L, ZHENG Y, YUAN J, et al. Effects of hardness of steel on ceramic armor module against long rod impact [J]. International Journal of Impact Engineering, 2017, 109(11): 419–426. DOI: 10.1016/j.ijimpeng.2017.08.004. [22] CHI R Q, SERJOUEI A, SRIDHAR I, et al. Pre-stress effect on confined ceramic armor ballistic performance [J]. International Journal of Impact Engineering, 2015, 84(8): 159–170. DOI: 10.1016/j.ijimpeng.2015.05.011. [23] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [C] // AIP Conference Proceedings. USA: American Institute of Physics, 1994, 309(1): 981−984. DOI: 10.1063/1.46199. [24] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C] // 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 541−547. [25] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9. [26] 郎林, 陈小伟, 雷劲松. 长杆和分段杆侵彻的数值模拟 [J]. 爆炸与冲击, 2011, 31(2): 127–134. DOI: 10.11883/1001-1455(2011)02-0127-08.LANG L, CHEN X W, LEI J S. Numerical simulations on long rods and segmented rods penetrating into steel target [J]. Explosion and Shock Waves, 2011, 31(2): 127–134. DOI: 10.11883/1001-1455(2011)02-0127-08. [27] LEE J K. Analysis of multi-layered materials under high velocity impact using CTH [D]. Ohio: Air Force Institute of Technology, 2008: 32−33.