Safety control standard of blasting vibration for tunnels with existing cracks and cavities
-
摘要: 爆破荷载作用下,既有隧道衬砌的振动安全振速控制标准制定,大多以既有隧道完好为前提条件,不考虑病害因子对结构动力响应的影响,与实际不相符。为此,以既有新岭隧道旁拟建新隧道为工程背景,基于既有隧道衬砌裂缝和背后空洞的实际分布特征与规律,建立带裂缝与空洞的二维、三维结构模型,分析裂缝、空洞对衬砌动力响应的影响,提出以振速为指标的标准管理体系。结果表明:裂缝的最不利分布位置为迎爆侧边墙处,裂缝的存在增强了既有衬砌对S1应力(拉应力)的响应,振速控制标准的制定应以S1应力和裂缝径向深度为控制指标;当裂缝径向深度为(0~1/8)h、(1/8~1/2)h和>(1/2)h(h为衬砌厚度)时,控制标准分别为12、10和8 cm/s。空洞的最不利分布位置为拱顶,空洞的存在增强了既有衬砌对S1应力和振速的双重响应,以增强振速响应为主,振速控制标准的制定应以振速、空洞面积及纵向长度为控制指标,空洞工况下,控制标准为12 cm/s;空洞沿隧道纵向长度小于7 m时,监控范围为3~4倍纵长;空洞沿隧道纵向长度大于7 m时,监控范围为1~1.5倍纵长;纵向长度小时,倍数取大值。
-
关键词:
- 隧道工程 /
- 控制标准 /
- LS-DYNA三维模型 /
- 裂缝 /
- 空洞
Abstract: Most of safety control standard studies for existing tunnels under blasting vibrations are based on the premise that the existing tunnels are intact, and the effects of existing defects under the dynamic response are not considered. Therefore, based on the proposed new tunnel next to the Xinling tunnel as the engineering background, according to the actual distribution characteristics of tunnel defects (cracks and back-cavities), the two-dimensional and three-dimensional numerical models were established to analyze the influence of defects under structural dynamic response. Moreover, the standard management system was established. The results show that the most unfavorable distribution position of cracks is the side wall of explosion-proof which mainly increases the response of the lining structure to stress S1 (tensile stress). The control standard should take the stress S1 and the propagation depth of crack as the quantitative indicators. When the propagation depth is (0−1/8)h, (1/8−1/2)h, and >(1/2)h (h represents the thickness of the lining structure), the corresponding vibration velocity limit value is 12, 10, and 8 cm/s, respectively. The most unfavorable distribution position of back-cavities is at the arch crown, which increases the dual response of the lining structure to the stress S1 and the vibration velocity, and the vibration velocity response is the main one. The control standard should take the vibration velocity, plane size and longitudinal length of the cavity as the quantitative indicators. The vibration velocity limit value is 12 cm/s. When the longitudinal length of the cavity is less than 7 m, the monitoring range is 3−4 times of the longitudinal length; when the longitudinal length of the cavity is greater than 7 m, the monitoring range is 1−1.5 times of the longitudinal length; when the longitudinal length of the cavity is small, the multiple takes a large value.-
Key words:
- tunnel engineering /
- control standard /
- LS-DYNA 3D model /
- crack /
- cavity
-
表 1 材料参数
Table 1. Material parameters
材料 $ {E}_{\rm{d}} $/GPa $ {\mu }_{\rm{d}} $ γ/(kg·m−3) c/kPa φ/(°) 中风化粉砂岩(Ⅲ级) 14 0.25 2 300 700 39 二次衬砌 50 0.20 2 500 − − 表 2 计算工况详述
Table 2. Detailed simulation conditions
工况 编号 病害 说明 K1 K1-1 无 二维平面模型 K1-2 无 三维平面模型 K2 K2-1 裂缝 计算拱顶、拱腰(1/4)h深度、右边墙(1/4)h深度、右边墙(3/4)h深度的裂缝 K2-2 (最不利)裂缝 计算pm0, 2 pm0, 3 pm0, ···, n pm0时的振动响应 K3 K3-1 空洞 计算拱顶大空洞、拱顶小空洞、左拱腰小空洞、右拱腰小空洞 K3-2 (最不利)空洞 计算pm0, 2 pm0, 3 pm0, ···, n pm0时的振动响应 K3-3 空洞 三维模型,计算纵向长度影响 表 3 裂缝管理等级
Table 3. Crack classification
裂缝管理等级 裂缝深度 控制标准/(cm·s−1) Ⅰ (0~1/8)h 12 Ⅱ (1/8~1/2)h 10 Ⅲ >(1/2)h 8 表 4 空洞管理等级
Table 4. Cavity size classification
空洞管理等级 空洞平面面积/ m2 监控范围 控制标准/(cm·s−1) Ⅰ <5 空洞中心线为测线;纵向长度<7 m,3~4倍纵长;
纵向长度>7 m,1.0~1.5倍纵长;
纵向长度小,倍数取大值12 Ⅱ 5~15 Ⅲ >15 -
《中国公路学报》编辑部. 中国隧道工程学术研究综述2015 [J]. 中国公路学报, 2015, 28(5): 1–65. DOI: 10.19721/j.cnki.1001-7372.2015.05.001.Editorial Department of China Journal of Highway and Transport. Review on China’s tunnel engineering research: 2015 [J]. China Journal of Highway and Transport, 2015, 28(5): 1–65. DOI: 10.19721/j.cnki.1001-7372.2015.05.001. 林从谋, 陈礼彪, 蒋丽丽, 等. 高速公路扩建大断面特小净距隧道爆破稳定控制技术研究 [J]. 岩石力学与工程学报, 2010, 29(7): 1371–1378.LIN C M, CHEN L B, JIANG L L, et al. Research on blasting stability control technology of large-span highway tunnel with super-small clear spacing at highway expansion project [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(7): 1371–1378. 李洪涛, 卢文波, 舒大强, 等. P波作用下衬砌混凝土的爆破安全振动速度研究 [J]. 爆炸与冲击, 2007, 27(1): 34–39. DOI: 10.11883/1001-1455(2007)01-0034-06.LI H T, LU W B, SHU D Q, et al. Study on the safety velocity for concrete lining under P wave loading [J]. Explosion and Shock Waves, 2007, 27(1): 34–39. DOI: 10.11883/1001-1455(2007)01-0034-06. 易长平, 卢文波, 张建华, 等. 爆破振动作用下城门洞形衬砌的临界振速研究 [J]. 岩土力学, 2008, 29(8): 2203–2208. DOI: 10.3969/j.issn.1000-7598.2008.08.034.YI C P, LU W B, ZHANG J H, et al. Study on critical failure vibration velocity of arch with vertical wall lining subjected to blasting vibration [J]. Rock and Soil Mechanics, 2008, 29(8): 2203–2208. DOI: 10.3969/j.issn.1000-7598.2008.08.034. JIANG N, ZHOU C B. Blasting vibration safety criterion for a tunnel liner structure [J]. Tunnelling and Underground Space Technology, 2012, 32: 52–57. DOI: 10.1016/j.tust.2012.04.016. 王睿, 漆泰岳, 胡燊, 等. 隧道衬砌裂缝检测中的背景处理和断点连接算法 [J]. 应用基础与工程科学学报, 2017, 25(4): 742–750. DOI: 10.16058/j.issn.1005-0930.2017.04.009.WANG R, QI T Y, HU S, et al. Background processing of tunnel lining crack detection and breakpoint connection algorithm [J]. Journal of Basic Science and Engineering, 2017, 25(4): 742–750. DOI: 10.16058/j.issn.1005-0930.2017.04.009. 应国刚, 张顶立, 陈立平, 等. 荷载结构模型在拱顶空洞存在情况下的修正 [J]. 土木工程学报, 2015, 48(S1): 181–185.YING G G, ZHANG D L, CHEN L P, et al. Amendment of load-structure model with voids behind tunnel lining at vault [J]. China Civil Engineering Journal, 2015, 48(S1): 181–185. 刘敦文, 杨光, 彭怀德. 爆破作用下拱顶衬砌脱空对隧道结构安全的影响分析 [J]. 中南大学学报(自然科学版), 2013, 44(10): 4214–4220.LIU D W, YANG G, PENG H D. Analysis for impact of structural safety of tunnel induced by cavity on vault of lining under blasting [J]. Journal of Central South University (Science and Technology), 2013, 44(10): 4214–4220. 罗攀峰. 爆破振动作用下空洞对杉树陀隧道衬砌结构的影响研究[D]. 重庆: 重庆交通大学, 2018. 汪波, 郭新新, 王志伟, 等. 新建隧道爆破施工对既有空洞病害隧道的动力响应分析 [J]. 爆破, 2019, 36(3): 116–123; 146. DOI: 10.3963/j.issn.1001-487X.2019.03.018.WANG B, GUO X X, WANG Z W, et al. Caused dynamic response of existing cavity disease tunnel by blasting excavation of newly-built tunnel [J]. Blasting, 2019, 36(3): 116–123; 146. DOI: 10.3963/j.issn.1001-487X.2019.03.018. 汪波, 郭新新, 王志伟, 等. 新建隧道爆破施工对既有裂缝病害隧道的动力响应分析 [J]. 爆破, 2019, 36(1): 90–96. DOI: 10.3963/j.issn.1001-487X.2019.01.014.WANG B, GUO X X, WANG Z W, et al. Caused dynamic response of existing tunnel with cracks to blasting excavation of newly-built tunnel [J]. Blasting, 2019, 36(1): 90–96. DOI: 10.3963/j.issn.1001-487X.2019.01.014. BODAS A, KAHRAMAN A. Influence of carrier and gear manufacturing errors on the static load sharing behavior of planetary gear sets [J]. JSME International Journal Series C, 2004, 47(3): 908–915. DOI: 10.1299/jsmec.47.908. 陆俊华, 朱如鹏, 靳广虎. 行星传动动态均载特性分析 [J]. 机械工程学报, 2009, 45(5): 85–90. DOI: 10.3901/JME.2009.05.085.LU J H, ZHU R P, JIN G H. Analysis of dynamic load sharing behavior in planetary gearing [J]. Journal of Mechanical Engineering, 2009, 45(5): 85–90. DOI: 10.3901/JME.2009.05.085. 张震, 周传波, 路世伟, 等. 爆破振动作用下邻近埋地混凝土管道动力响应特性 [J]. 哈尔滨工业大学学报, 2017, 46(9): 79–84. DOI: 10.11918/j.issn.0367-6234.201611089.ZHANG Z, ZHOU C B, LU S W, et al. Dynamic response characteristic of adjacent buried concrete pipeline subjected to blasting vibration [J]. Journal of Harbin Institute of Technology, 2017, 46(9): 79–84. DOI: 10.11918/j.issn.0367-6234.201611089. 龚敏, 陈哲, 吴昊骏, 等. 掏槽药量与起爆时差的关系对隧道爆破合成振速的影响 [J]. 应用基础与工程科学学报, 2016, 24(6): 1110–1124. DOI: 10.16058/j.issn.1005-0930.2016.06.004.GONG M, CHEN Z, WU H J, et al. Influence of correlation between cut basting charge and detonating interval time on superposition vibration velocity caused by millisecond blasting in tunnel [J]. Journal of Basic Science and Engineering, 2016, 24(6): 1110–1124. DOI: 10.16058/j.issn.1005-0930.2016.06.004. 张忆, 杨文东, 彭振, 等. 地铁隧道爆破开挖对高层框架结构的动态响应 [J]. 爆破, 2018, 35(1): 147–153. DOI: 10.3963/j.issn.1001-487X.2018.01.024.ZHANG Y, YANG W D, PENG Z, et al. Caused dynamic response of high rise frame structure by blasting excavation of subway tunnel [J]. Blasting, 2018, 35(1): 147–153. DOI: 10.3963/j.issn.1001-487X.2018.01.024. 陈清松, 崔硕, 李小青. 隧道爆破振动影响因素模拟分析 [J]. 武汉理工大学学报(交通科学与工程版), 2018, 42(1): 77–82. DOI: 10.3963/j.issn.2095-3844.2018.01.017.CHEN Q S, CUI S, LI X Q. Simulation analysis on influence factors of tunnel blasting vibration [J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2018, 42(1): 77–82. DOI: 10.3963/j.issn.2095-3844.2018.01.017. 王思敬, 吴志勇, 董万里, 等. 水电工程岩体的弹性波测试[M]. 北京: 科学出版社, 1980. 戴俊. 岩石动力学特性与爆破理论[M]. 北京: 冶金工业出版社, 2002. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 爆破安全规程: GB 6722-2014 [S]. 北京: 中国标准出版社, 2015. 凌同华, 曹峰, 张胜, 等. 分岔隧道过渡段的爆破振动特性研究 [J]. 振动与冲击, 2018, 37(2): 43–50. DOI: 10.13465/j.cnki.jvs.2018.2.007.LING T H, CAO F, ZHANG S, et al. Blast vibration characteristics of transition segment of a branch tunnel [J]. Journal of Vibration and Shock, 2018, 37(2): 43–50. DOI: 10.13465/j.cnki.jvs.2018.2.007. 陈元素. 受腐蚀混凝土力学性能试验研究[D]. 大连: 大连理工大学, 2006.