泡沫铝内衬对抗内部爆炸钢筒变形的影响

程帅 师莹菊 殷文骏 刘文祥 唐仕英 张德志

程帅, 师莹菊, 殷文骏, 刘文祥, 唐仕英, 张德志. 泡沫铝内衬对抗内部爆炸钢筒变形的影响[J]. 爆炸与冲击, 2020, 40(7): 071406. doi: 10.11883/bzycj-2019-0339
引用本文: 程帅, 师莹菊, 殷文骏, 刘文祥, 唐仕英, 张德志. 泡沫铝内衬对抗内部爆炸钢筒变形的影响[J]. 爆炸与冲击, 2020, 40(7): 071406. doi: 10.11883/bzycj-2019-0339
CHENG Shuai, SHI Yingju, YIN Wenjun, LIU Wenxiang, TANG Shiying, ZHANG Dezhi. Influence of aluminum foam lining on deformation of steel cylinders subjected to internal blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 071406. doi: 10.11883/bzycj-2019-0339
Citation: CHENG Shuai, SHI Yingju, YIN Wenjun, LIU Wenxiang, TANG Shiying, ZHANG Dezhi. Influence of aluminum foam lining on deformation of steel cylinders subjected to internal blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 071406. doi: 10.11883/bzycj-2019-0339

泡沫铝内衬对抗内部爆炸钢筒变形的影响

doi: 10.11883/bzycj-2019-0339
详细信息
    作者简介:

    程 帅(1988- ),男,博士研究生,助理研究员,chengshuai@nint.ac.cn

    通讯作者:

    张德志(1973- ),男,博士,研究员,zhangdezhi@nint.ac.cn

  • 中图分类号: O383.3

Influence of aluminum foam lining on deformation of steel cylinders subjected to internal blast loading

  • 摘要: 为提高承受内部爆炸载荷钢筒的抗爆性能,研究了泡沫铝内衬对钢筒变形的影响。首先通过对比实验,发现在本文的实验条件下,泡沫铝内衬导致钢筒变形增大,甚至发生了严重的破坏;进而建立有限元模型,研究了钢筒变形随爆炸当量、泡沫铝内衬厚度的变化机理和规律。结果表明,添加足够厚度的泡沫铝内衬能够减小钢筒变形,但泡沫铝厚度不足时,则可能起到相反的效果。对于固定尺寸的含泡沫铝内衬钢筒,随着爆炸当量增加,泡沫铝内衬对钢筒塑性变形的影响主要包含3种模式。模式1,泡沫铝可通过塑性变形吸收爆炸载荷,从而减小钢筒变形。模式2,泡沫铝内衬导致钢筒承受的载荷强度增大,钢筒塑性变形增大。模式3,泡沫铝对载荷强度的影响可忽略,泡沫铝通过增大结构质量减小钢筒塑性变形。
  • 图  1  实验装置示意图

    Figure  1.  Sketch of the experiment device

    图  2  实验用钢筒和泡沫铝内衬

    Figure  2.  The steel cylinder and aluminum foam lining used in the experiment

    图  3  泡沫铝静态应力应变曲线

    Figure  3.  Static stress-strain curve of aluminum foam

    图  4  钢筒破碎情况

    Figure  4.  The cracked steel cylinder

    图  5  用于数值模拟的二维轴对称模型

    Figure  5.  The two-dimensional axisymmetric model used in numerical simulation

    图  6  计算结果与实验数据的对比

    Figure  6.  Comparison of simulated and experimental results

    图  7  泡沫铝内衬对钢筒内壁载荷历程的影响(10 g TNT)

    Figure  7.  Influences of aluminum foam linings on the pressure loading on the inner surfaces of steel cylinders (10 g TNT)

    图  8  泡沫铝内衬对钢筒外壁弹性径向膨胀的影响

    Figure  8.  Influences of aluminum foam linings on the elastic radial expansion of the outer walls of steel cylinders

    图  9  泡沫铝内衬对钢筒塑性变形的影响

    Figure  9.  Influences of aluminum foam linings on plastic deformation of steel cylinders

    图  10  泡沫铝内衬对钢筒内壁载荷历程的影响

    Figure  10.  Influences of aluminum foam linings on pressure loading on the inner surfaces of steel cylinders

    表  1  实验设置和钢筒外表面的变形情况

    Table  1.   The experimental setup and deformation of the outer surfaces of the steel cylinders

    实验编号炸药质量/g厚度/mm钢筒径向膨胀/mm钢筒残余应变/%
    钢筒泡沫铝实验模拟实验模拟
    1 10 6 00.130.1700
    2 10 6100.150.1900
    318312 05.30 5.408.48.6
    418312 57.80 7.2012.411.1
    51801215破裂13.0019.6
    下载: 导出CSV

    表  2  TNT炸药的JWL状态方程参数

    Table  2.   Parameters in the JWL equation of state for TNT explosive

    ρ0/(kg∙m−3)e0/(J∙kg−1)D/(m∙s−1)pCJ/GPaA/GPaB/GPaR1R2$\omega '$
    1 6304.26×106693021371.23.2314.150.950.3
    下载: 导出CSV
  • [1] 任新见, 李广新, 张胜民. 泡沫铝夹心排爆罐抗爆性能试验研究 [J]. 振动与冲击, 2011, 30(5): 213–217. DOI: 10.3969/j.issn.1000-3835.2011.05.044.

    REN X J, LI G X, ZHANG S M. Antidetonation property tests for explosion-proof pots made of sandwich structure with aluminium foam [J]. Journal of Vibration and Shock, 2011, 30(5): 213–217. DOI: 10.3969/j.issn.1000-3835.2011.05.044.
    [2] 刘新让, 田晓耕, 卢天健, 等. 泡沫铝夹芯圆筒抗爆性能研究 [J]. 振动与冲击, 2012, 31(23): 166–173. DOI: 10.3969/j.issn.1000-3835.2012.23.031.

    LIU X R, TIAN X G, LU T J, et al. Blast-resistance behaviors of sandwich-walled hollow cylinders with aluminum foam cores [J]. Journal of Vibration and Shock, 2012, 31(23): 166–173. DOI: 10.3969/j.issn.1000-3835.2012.23.031.
    [3] GOEL M D, MATSAGAR V A, GUPTA A K. Blast resistance of stiffened sandwich panels with aluminum cenosphere syntactic foam [J]. International Journal of Impact Engineering, 2015, 77: 134–146. DOI: 10.1016/j.ijimpeng.2014.11.017.
    [4] SANTOSA S P, ARIFURRAHMAN F, IZZUDIN M H, et al. Response analysis of blast impact loading of metal-foam sandwich panels [J]. Procedia Engineering, 2017, 173: 495–502. DOI: 10.1016/j.proeng.2016.12.073.
    [5] 张培文, 李鑫, 王志华, 等. 爆炸载荷作用下不同面板厚度对泡沫铝夹芯板动力响应的影响 [J]. 高压物理学报, 2013, 27(5): 699–703. DOI: 10.11858/gywlxb.2013.05.007.

    ZHANG P W, LI X, WANG Z H, et al. Effect of face sheet thickness on dynamic response of aluminum foam sandwich panels under blast loading [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 699–703. DOI: 10.11858/gywlxb.2013.05.007.
    [6] 王涛, 余文力, 秦庆华, 等. 爆炸载荷下泡沫铝夹芯板变形与破坏模式的实验研究 [J]. 兵工学报, 2016, 37(8): 1456–1463. DOI: 10.3969/j.issn.1000-1093.2016.08.017.

    WANG T, YU W L, QIN Q H, et al. Experimental investigation into deformation and damage patterns of sandwich plates with aluminum foam core subjected to blast loading [J]. Acta Armamentarii, 2016, 37(8): 1456–1463. DOI: 10.3969/j.issn.1000-1093.2016.08.017.
    [7] 周佩杰, 王坚, 陶钢, 等. 泡沫材料对冲击波的衰减特性 [J]. 爆炸与冲击, 2015, 35(5): 675–681. DOI: 10.11883/1001-1455(2015)05-0675-07.

    ZHOU P J, WANG J, TAO G, et al. Attenuation characteristics of shock waves interacting with open and closed foams [J]. Explosion and Shock Waves, 2015, 35(5): 675–681. DOI: 10.11883/1001-1455(2015)05-0675-07.
    [8] SKEWS B W, ATKINS M D, SEITZ M W. The impact of a shock wave on porous compressible foams [J]. Journal of Fluid Mechanics, 1993, 253: 245–265. DOI: 10.1017/S0022112093001788.
    [9] LI Q M, MENG H. Attenuation or enhancement: a one-dimensional analysis on shock transmission in the solid phase of a cellular material [J]. International Journal of Impact Engineering, 2002, 27(10): 1049–1065. DOI: 10.1016/S0734-743X(02)00016-7.
    [10] TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams: Part Ⅰ: experimental data and observations [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174–2205. DOI: 10.1016/j.jmps.2005.05.007.
    [11] TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams: Part Ⅱ: ‘shock’ theory and comparison with experimental data and numerical models [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206–2230. DOI: 10.1016/j.jmps.2005.05.003.
    [12] LOPATNIKOV S L, GAMA B A, HAQUE J, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment [J]. Composite Structures, 2003, 61(1−2): 61–71.
    [13] HARRIGAN J J, REID S R, YAGHOUBI A S. The correct analysis of shocks in a cellular material [J]. International Journal of Impact Engineering, 2010, 37(8): 918–927. DOI: 10.1016/j.ijimpeng.2009.03.011.
    [14] ALEYAASIN M, HARRIGAN J J, REID S R. Air-blast response of cellular material with a face plate: an analytical-numerical approach [J]. International Journal of Mechanical Sciences, 2015, 91: 64–70. DOI: 10.1016/j.ijmecsci.2014.03.027.
    [15] 秦学军, 张德志, 杨军, 等. 内部爆炸作用下钢筒塑性变形研究 [J]. 兵工学报, 2014, 35(S2): 135−138.

    QIN X J, ZHANG D Z, YANG J, et al. Research on plastic deformation of cylindrical steel shells under internal explosion loading [J]. Acta Armamentarii, 2014, 35(S2): 135−138.
    [16] 张德志. 柱形爆炸容器载荷与塑形结构响应研究 [D]. 西安: 西北核技术研究所, 2012: 66−68.

    ZHANG D Z. Investigation on load and plastic structure response of cylindrical explosion vessel [D]. Xi’an: Northwest Institute of Nuclear Technology, 2012: 66−68.
    [17] 杨军, 王克逸, 徐海斌, 等. 光纤位移干涉仪的研制及其在Hopkinson压杆实验中的应用 [J]. 红外与激光工程, 2013, 42(1): 102–107. DOI: 10.3969/j.issn.1007-2276.2013.01.019.

    YANG J, WANG K Y, XU H B, et al. Development of an optical-fiber displacement interferometer and its application in Hopkinson pressure bar experiment [J]. Infrared and Laser Engineering, 2013, 42(1): 102–107. DOI: 10.3969/j.issn.1007-2276.2013.01.019.
    [18] 杨军, 李焰, 张德志, 等. 光子多普勒测速仪与压杆相结合的冲击波反射压力测试技术 [J]. 兵工学报, 2017, 38(7): 1368–1374. DOI: 10.3969/j.issn.1000-1093.2017.07.015.

    YANG J, LI Y, ZHANG D Z, et al. Measuring technique of reflected blast wave pressure based on pressure bar and Photonic Doppler Velocimeter [J]. Acta Armamentarii, 2017, 38(7): 1368–1374. DOI: 10.3969/j.issn.1000-1093.2017.07.015.
    [19] 刘文祥, 张庆明, 钟方平, 等. 球壳塑性变形下的应变增长现象 [J]. 爆炸与冲击, 2017, 37(5): 893–898. DOI: 10.11883/1001-1455(2017)05-0893-06.

    LIU W X, ZHANG Q M, ZHONG F P, et al. Strain growth of spherical shell subjected to internal blast loading during plastic response [J]. Explosion and Shock Waves, 2017, 37(5): 893–898. DOI: 10.11883/1001-1455(2017)05-0893-06.
    [20] 闻邦椿. 机械设计手册: 第一卷[M]. 5版. 北京: 机械工业出版社, 2011: 2−39.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  4900
  • HTML全文浏览量:  1763
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-03
  • 修回日期:  2020-05-13
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回