爆炸下球壳变形空间周期分布的理论计算方法

刘文祥 张德志 钟方平 程帅 张庆明

刘文祥, 张德志, 钟方平, 程帅, 张庆明. 爆炸下球壳变形空间周期分布的理论计算方法[J]. 爆炸与冲击, 2020, 40(6): 064201. doi: 10.11883/bzycj-2019-0340
引用本文: 刘文祥, 张德志, 钟方平, 程帅, 张庆明. 爆炸下球壳变形空间周期分布的理论计算方法[J]. 爆炸与冲击, 2020, 40(6): 064201. doi: 10.11883/bzycj-2019-0340
LIU Wenxiang, ZHANG Dezhi, ZHONG Fangping, CHENG Shuai, ZHANG Qingming. A theoretical method for calculating spatial periodic distribution of deformation of a spherical shell under explosive loading[J]. Explosion And Shock Waves, 2020, 40(6): 064201. doi: 10.11883/bzycj-2019-0340
Citation: LIU Wenxiang, ZHANG Dezhi, ZHONG Fangping, CHENG Shuai, ZHANG Qingming. A theoretical method for calculating spatial periodic distribution of deformation of a spherical shell under explosive loading[J]. Explosion And Shock Waves, 2020, 40(6): 064201. doi: 10.11883/bzycj-2019-0340

爆炸下球壳变形空间周期分布的理论计算方法

doi: 10.11883/bzycj-2019-0340
详细信息
    作者简介:

    刘文祥(1982- ),男,博士,副研究员,liuwenxiang@nint.ac.cn

    通讯作者:

    张庆明(1963- ),男,博士,教授,qmzhang@bit.edu.cn

  • 中图分类号: O383

A theoretical method for calculating spatial periodic distribution of deformation of a spherical shell under explosive loading

  • 摘要: 早期研究提出了对振动叠加应变增长现象的解剖式分析方法,进而发现爆炸加载下带扰动源球壳上的弯曲波和壳体变形呈空间周期分布的规律。参考Timoshenko梁的弯曲理论,基于平截面假定和壳体发生较小的弯曲变形的假设,推导出球壳上弯曲波波速和波长的关系,计算得到最短弯曲波和与膜振动频率相近的弯曲波的波速,还结合早期研究提出的壳体变形分布周期与弯曲波波速的关系,计算得到了壳体变形空间分布的周期。结果表明:(1)理论计算结果与数值仿真结果基本吻合,其中弯曲波波速的计算结果与数值仿真结果相差在15%以内,壳体变形空间分布周期的计算结果与数值仿真结果相差在12%以内;(2)弯曲波波长越短,波速越快,当波长无限短时,波速趋于极限值,约为声速的0.574倍。本计算方法为解剖式分析方法提供了一定的理论依据。
  • 图  1  球壳数值模型

    Figure  1.  The numerical model for the spherical shell

    图  2  扰动源半径为10 mm时球壳上扰动源正对位置的应变曲线

    Figure  2.  Total strain-time curves of spherical shell at the pole opposite to the site of perturbation when the disturbance source radius is 10 mm

    图  3  薄壳变形机理

    Figure  3.  Deformation mechanism of thin shell

    图  4  壳体上不同位置的弯曲应变曲线和不同时刻的壳体上弯曲波

    Figure  4.  Bending strain-time curves at different positions on spherical shell and bend waves at different moments

    图  5  2种扰动源半径下壳体应变峰值的分布

    Figure  5.  Total strain along spherical shell for two kinds of disturbance source radii

    图  6  壳体弯曲变形示意图

    Figure  6.  Schematic diagram of spherical shell bending deformation

    图  7  球壳上弯曲波波速与波长的关系

    Figure  7.  Relation between length and velocity of bending wave

    图  8  弯曲波A的波长与波速

    Figure  8.  Length and velocity of bending wave A

    表  1  弯曲波的速度

    Table  1.   Velocities of bending waves propagating along shell.

    α/(°)与膜振动频率相近的弯曲波A最短弯曲波
    到达时间/μs平均波速/(m·s−1) 到达时间/μs平均波速/(m·s−1)
    44.2 436.3427.1 63.42 964.8
    88.0 909.7427.1131.63 069.1
    136.01 436.6443.4203.83 188.7
    180.01 894.7267.5
    下载: 导出CSV
  • [1] BUZUKOV A A. Characteristics of the behavior of the walls of explosion chambers under the action of pulsed loading [J]. Combustion, Explosion, and Shock Waves, 1976, 12(4): 549–554. DOI: 10.1007/BF00741150.
    [2] DONG Q, LI Q M, ZHENG J Y. Further study on strain growth in spherical containment vessels subjected to internal blast loading [J]. International Journal of Impact Engineering, 2010, 37(2): 196–206. DOI: 10.1016/j.ijimpeng.2009.09.001.
    [3] Li Q M, DONG Q, ZHENG J Y. Strain growth of the in-plane response in an elastic cylindrical shell [J]. International Journal of Impact Engineering, 2008, 35(10): 1130–1153. DOI: 10.1016/j.ijimpeng.2008.01.007.
    [4] 刘文祥, 张庆明, 钟方平, 等. 球壳塑性变形下的应变增长现象 [J]. 爆炸与冲击, 2017, 37(5): 893–898. DOI: 10.11883/1001-1455(2017)05-0893-06.

    LIU W X, ZHANG Q M, ZHONG F P, et al. Strain growth of spherical shell subjected to internal blast loading during plastic response [J]. Explosion and Shock Waves, 2017, 37(5): 893–898. DOI: 10.11883/1001-1455(2017)05-0893-06.
    [5] 刘文祥, 张德志, 程帅, 等. 球形爆炸容器应变增长现象的极限情况 [J]. 爆炸与冲击, 2017, 37(6): 901–906. DOI: 10.11883/1001-1455(2017)06-0901-06.

    LIU W X, ZHANG D Z, CHENG S, et al. Limit of strain growth in a spherical explosion vessel [J]. Explosion and Shock Waves, 2017, 37(6): 901–906. DOI: 10.11883/1001-1455(2017)06-0901-06.
    [6] ZHU W H, XUE H L, ZHOU G Q, et al. Dynamic response of cylindrical explosive chambers to internal blast loading produced by a concentrated charge [J]. International Journal of Impact Engineering, 1997, 19(9-10): 831–845. DOI: 10.1016/S0734-743X(97)00022-5.
    [7] DUFFEY T A, ROMERO C. Strain growth in spherical explosive chambers subjected to internal blast loading [J]. International Journal of Impact Engineering, 2003, 28(9): 967–983. DOI: 10.1016/S0734-743X(02)00169-0.
    [8] LIU W X, ZHANG Q M, ZHONG F P, et al. Further research on mechanism of strain growth caused by superposition of different vibration modes [J]. International Journal of Impact Engineering, 2017, 104: 1–12. DOI: 10.1016/j.ijimpeng.2017.01.025.
    [9] 王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005.
    [10] KOLSKY H. Stress waves in solids [M]. Oxford: Clarendon Press, 1953.
    [11] COWPER G R. The shear coefficient in Timoshenko’s beam theory [J]. Journal of Applied Mechanics, 1966, 33(2): 335–340. DOI: 10.1115/1.3625046.
    [12] 刘鸿文. 材料力学[M]. 5版. 北京: 高等教育出版社, 2011.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  4430
  • HTML全文浏览量:  1803
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-03
  • 修回日期:  2020-05-22
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回