A theoretical method for calculating spatial periodic distribution of deformation of a spherical shell under explosive loading
-
摘要: 早期研究提出了对振动叠加应变增长现象的解剖式分析方法,进而发现爆炸加载下带扰动源球壳上的弯曲波和壳体变形呈空间周期分布的规律。参考Timoshenko梁的弯曲理论,基于平截面假定和壳体发生较小的弯曲变形的假设,推导出球壳上弯曲波波速和波长的关系,计算得到最短弯曲波和与膜振动频率相近的弯曲波的波速,还结合早期研究提出的壳体变形分布周期与弯曲波波速的关系,计算得到了壳体变形空间分布的周期。结果表明:(1)理论计算结果与数值仿真结果基本吻合,其中弯曲波波速的计算结果与数值仿真结果相差在15%以内,壳体变形空间分布周期的计算结果与数值仿真结果相差在12%以内;(2)弯曲波波长越短,波速越快,当波长无限短时,波速趋于极限值,约为声速的0.574倍。本计算方法为解剖式分析方法提供了一定的理论依据。Abstract: The strain growth, caused by vibration superposition, has been anatomized by the membrane strain and the bending strain in existing studies, and the bending wave and deformation spatial periodic distribution of a spherical shell under explosive loading have been found. By referring to the theoretical method for Timoshenko beam bending, based on a plane-section assumption and a small-deformation limit, the relation between the velocity and the wavelength of bending wave was deduced, and the velocities of the shortest bending wave and the bending wave with a frequency similar to that of the membrane vibration were calculated. By combining the relation between the deformation spatial distribution period and the bending wave velocity presented in existing studies, the deformation spatial distribution period was calculated. The main conclusions are as follows: (1) The theoretical results are in good agreement with the numerical results, in which the difference between the numerical and theoretical results of bending wave velocity is within 15%, and the difference between the numerical and theoretical results of the deformation spatial distribution period is within 12%. (2) The shorter the wavelength, the higher the wave velocity, when the wavelength is infinite short, the bending wave velocity tends to the limit value, about 0.574 times the speed of sound. The theoretical method presented in this paper provides a certain theoretical support for anatomizing strain growth.
-
Key words:
- explosive vessel /
- strain growth /
- bending wave /
- spatial periodic distribution
-
表 1 弯曲波的速度
Table 1. Velocities of bending waves propagating along shell.
α/(°) 与膜振动频率相近的弯曲波A 最短弯曲波 到达时间/μs 平均波速/(m·s−1) 到达时间/μs 平均波速/(m·s−1) 44.2 436.3 427.1 63.4 2 964.8 88.0 909.7 427.1 131.6 3 069.1 136.0 1 436.6 443.4 203.8 3 188.7 180.0 1 894.7 267.5 -
[1] BUZUKOV A A. Characteristics of the behavior of the walls of explosion chambers under the action of pulsed loading [J]. Combustion, Explosion, and Shock Waves, 1976, 12(4): 549–554. DOI: 10.1007/BF00741150. [2] DONG Q, LI Q M, ZHENG J Y. Further study on strain growth in spherical containment vessels subjected to internal blast loading [J]. International Journal of Impact Engineering, 2010, 37(2): 196–206. DOI: 10.1016/j.ijimpeng.2009.09.001. [3] Li Q M, DONG Q, ZHENG J Y. Strain growth of the in-plane response in an elastic cylindrical shell [J]. International Journal of Impact Engineering, 2008, 35(10): 1130–1153. DOI: 10.1016/j.ijimpeng.2008.01.007. [4] 刘文祥, 张庆明, 钟方平, 等. 球壳塑性变形下的应变增长现象 [J]. 爆炸与冲击, 2017, 37(5): 893–898. DOI: 10.11883/1001-1455(2017)05-0893-06.LIU W X, ZHANG Q M, ZHONG F P, et al. Strain growth of spherical shell subjected to internal blast loading during plastic response [J]. Explosion and Shock Waves, 2017, 37(5): 893–898. DOI: 10.11883/1001-1455(2017)05-0893-06. [5] 刘文祥, 张德志, 程帅, 等. 球形爆炸容器应变增长现象的极限情况 [J]. 爆炸与冲击, 2017, 37(6): 901–906. DOI: 10.11883/1001-1455(2017)06-0901-06.LIU W X, ZHANG D Z, CHENG S, et al. Limit of strain growth in a spherical explosion vessel [J]. Explosion and Shock Waves, 2017, 37(6): 901–906. DOI: 10.11883/1001-1455(2017)06-0901-06. [6] ZHU W H, XUE H L, ZHOU G Q, et al. Dynamic response of cylindrical explosive chambers to internal blast loading produced by a concentrated charge [J]. International Journal of Impact Engineering, 1997, 19(9-10): 831–845. DOI: 10.1016/S0734-743X(97)00022-5. [7] DUFFEY T A, ROMERO C. Strain growth in spherical explosive chambers subjected to internal blast loading [J]. International Journal of Impact Engineering, 2003, 28(9): 967–983. DOI: 10.1016/S0734-743X(02)00169-0. [8] LIU W X, ZHANG Q M, ZHONG F P, et al. Further research on mechanism of strain growth caused by superposition of different vibration modes [J]. International Journal of Impact Engineering, 2017, 104: 1–12. DOI: 10.1016/j.ijimpeng.2017.01.025. [9] 王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005. [10] KOLSKY H. Stress waves in solids [M]. Oxford: Clarendon Press, 1953. [11] COWPER G R. The shear coefficient in Timoshenko’s beam theory [J]. Journal of Applied Mechanics, 1966, 33(2): 335–340. DOI: 10.1115/1.3625046. [12] 刘鸿文. 材料力学[M]. 5版. 北京: 高等教育出版社, 2011. 期刊类型引用(14)
1. 罗刚,严荔,李文权,杨云生,张宇航,AHMED MD Elias,刘凤玲. 水下爆炸作用下悬浮隧道结构设计与优化. 中国公路学报. 2025(02): 47-59 . 百度学术
2. 张典典,何晖,石同幸. 爆炸损伤后起波钢筋混凝土梁吸能能力有限元分析. 低温建筑技术. 2024(04): 101-104 . 百度学术
3. 曾浩,袁鹏程,杨婷,徐慎春,吴成清. 地聚物超高性能混凝土复合板抗接触爆炸试验与数值模拟. 爆炸与冲击. 2024(06): 105-121 . 本站查看
4. 李爱群,晁磊,刘少波,吴宜峰,杨参天. 泡沫铝复合结构的制备研究进展与展望. 建筑结构. 2024(19): 90-98+168 . 百度学术
5. 魏广帅,汪维,杨建超,高伟亮. POZD涂覆钢板加固钢筋混凝土板抗爆性能研究. 材料导报. 2023(21): 289-296 . 百度学术
6. 雷升祥,赵伟,雷宇明. 城市地下空间工程韧性提升研究. 隧道建设(中英文). 2023(10): 1627-1636 . 百度学术
7. 刘超,孙启鑫,李会驰. 近爆作用下钢筋混凝土π梁防护性能的数值模拟. 振动与冲击. 2022(04): 223-231 . 百度学术
8. 周宏元,杜文钊,王小娟,张雪健,余尚江,张宏. 地冲击下新型脆断构件防护性能实验研究. 爆炸与冲击. 2022(07): 115-125 . 本站查看
9. 魏崇一,杨骥,彭春霖,李广帮,廖相巍. 泡沫金属的发展及制备方法. 鞍钢技术. 2022(05): 8-13+23 . 百度学术
10. 周辉,任辉启,吴祥云,易治,黄魁,穆朝民,王海露. 成层式防护结构中分散层研究综述. 爆炸与冲击. 2022(11): 3-28 . 本站查看
11. 陈沫衡,张典堂,钱坤,徐阳. 防爆墙材料与结构研究进展. 工程爆破. 2021(05): 93-101 . 百度学术
12. 张嵩,巴振宁,赵靖轩. 大直径盾构隧道复合泡沫铝保护层抗爆性能研究. 市政技术. 2020(03): 149-152 . 百度学术
13. 周宏元,李永胜,王小娟,杜建国,余尚江,陈荣华. 地冲击作用下基于泡沫混凝土的地下结构柔性防护. 北京工业大学学报. 2020(06): 533-539 . 百度学术
14. 刘飞,杨超志,夏明,贾鑫,汪剑辉. 钢筋混凝土板爆炸动态响应研究进展. 防护工程. 2020(05): 1-9 . 百度学术
其他类型引用(19)
-