聚乙烯泡沫单填充纸瓦楞管的轴向跌落冲击缓冲吸能特性

韩旭香 郭彦峰 韦青 付云岗 吉美娟 张伟

韩旭香, 郭彦峰, 韦青, 付云岗, 吉美娟, 张伟. 聚乙烯泡沫单填充纸瓦楞管的轴向跌落冲击缓冲吸能特性[J]. 爆炸与冲击, 2020, 40(6): 063102. doi: 10.11883/bzycj-2019-0341
引用本文: 韩旭香, 郭彦峰, 韦青, 付云岗, 吉美娟, 张伟. 聚乙烯泡沫单填充纸瓦楞管的轴向跌落冲击缓冲吸能特性[J]. 爆炸与冲击, 2020, 40(6): 063102. doi: 10.11883/bzycj-2019-0341
HAN Xuxiang, GUO Yanfeng, WEI Qing, FU Yungang, JI Meijuan, ZHANG Wei. Cushioning energy absorption of polyethylene foam single-filledpaper corrugation tubes under axial drop impact[J]. Explosion And Shock Waves, 2020, 40(6): 063102. doi: 10.11883/bzycj-2019-0341
Citation: HAN Xuxiang, GUO Yanfeng, WEI Qing, FU Yungang, JI Meijuan, ZHANG Wei. Cushioning energy absorption of polyethylene foam single-filledpaper corrugation tubes under axial drop impact[J]. Explosion And Shock Waves, 2020, 40(6): 063102. doi: 10.11883/bzycj-2019-0341

聚乙烯泡沫单填充纸瓦楞管的轴向跌落冲击缓冲吸能特性

doi: 10.11883/bzycj-2019-0341
基金项目: 陕西省重点研发计划一般项目(2018GY-191);西安市科技计划项目(2017080CG/RC043(XALG024))
详细信息
    作者简介:

    韩旭香(1996- ),女,硕士研究生,1398113711@qq.com

    通讯作者:

    郭彦峰(1970- ),男,博士,教授,guoyf@xaut.edu.cn

  • 中图分类号: O342; TB484.1

Cushioning energy absorption of polyethylene foam single-filledpaper corrugation tubes under axial drop impact

  • 摘要: 利用聚乙烯闭孔泡沫单填充纸瓦楞管开展轴向跌落冲击试验,对比分析了结构参数和冲击参数对其缓冲吸能特性参数(比吸能、行程利用率、压缩力效率、比总体效率)的影响。结果表明,X向单填充管的动态缓冲吸能特性优于Y向单填充管,而静态缓冲吸能特性差于Y向单填充管。正四边形单填充管的动态缓冲吸能特性优于正五、六边形单填充管,X向正四边形单填充管的比吸能相较于正五、六边形管分别提高了114.4%和182.3%。对于跌落冲击压缩,单填充管的比吸能、行程利用率、比总体效率随着管长比的增大而减小,管长比为1.4的X向单填充管的比吸能相较于管长比为2.2和3.0的单填充管分别增加了45.8%和117.9%,而压缩力效率随着管长比的增大而增大。随着跌落冲击质量或冲击能量的增加,比吸能、行程利用率、压缩力效率和比总体效率皆呈增大趋势,冲击质量对X向单填充管的影响较大,而冲击速度则对Y向单填充管的影响较大。
  • 图  1  EPE单填充纸瓦楞管的结构

    Figure  1.  Structures of EPE single-filled paper corrugation tube

    图  2  轴向静态压缩应力应变曲线

    Figure  2.  Stress and strain curves of axial static compression

    图  3  轴向静态压缩变形

    Figure  3.  Deformation of axial static compression

    图  4  管侧壁的受力情况

    Figure  4.  Force exerted on the side wall of the tube

    图  5  加速度时程曲线

    Figure  5.  Acceleration-time curves

    图  6  跌落冲击过程的应力应变曲线

    Figure  6.  Stress-strain curves of the drop impact process

    图  7  不同管方向的应力应变曲线

    Figure  7.  Stress-strain curves of different tube directions

    图  8  不同管方向的变形

    Figure  8.  Deformation of different tube directions

    图  9  不同管横截面形状的应力应变曲线

    Figure  9.  Stress-strain curves of different tube cross-section shapes

    图  10  不同管横截面形状的变形模式

    Figure  10.  Deformation of different tube cross-section shapes

    图  11  不同管长比的应力应变曲线

    Figure  11.  Stress-strain curves of different tube length ratios

    图  12  不同管长比的变形模式

    Figure  12.  Deformation of different tube length ratios

    图  13  不同跌落冲击质量的应力应变曲线

    Figure  13.  Stress-strain curves of different drop impact masses

    图  14  不同跌落冲击质量的变形模式

    Figure  14.  Deformation of different drop impact masses

    图  15  不同跌落冲击质量的缓冲吸能特性比较

    Figure  15.  Comparison of cushioning energy absorption for different drop impact masses

    图  16  不同跌落冲击能量的应力应变曲线

    Figure  16.  Stress-strain curves of different drop impact energies

    图  17  不同跌落冲击能量的变形模式

    Figure  17.  Deformation of different drop impact energies

    图  18  不同跌落冲击能量的缓冲吸能特性比较

    Figure  18.  Comparison of cushioning energy absorption for different drop impact energies

    表  1  试样结构参数与跌落冲击参数

    Table  1.   Parameters of sample structures and drop impacts

    管结构参数跌落冲击参数
    dnl2/l1l1/mml2/mmH/cmM/kg
    X, Y4, 5, 61.435 49H1=30, H2=50, H3=70M1=7.000, M2=9.125, M3=11.275, M4=14.550
    50 70
    X, Y4, 5, 62.235 77H1=30, H2=50, H3=70M1=7.000, M2=9.125, M3=11.275, M4=14.550
    50110
    X, Y4, 5, 63.035105H1=30, H2=50, H3=70M1=7.000, M2=9.125, M3=11.275, M4=14.550
    50150
    下载: 导出CSV

    表  2  不同管方向的静态缓冲吸能特性比较

    Table  2.   Comparison of static cushioning energy absorption for different tube directions

    试样σy/MPaσb/MPaE/Jea/(J·g−1)Δs/%ηcf/%ηt/kg−1
    CT4X-50/70-SF-120.2860.191 37.901.52661.5866.8216.77
    CT4Y-50/70-SF-120.6250.467 96.473.63165.1374.7418.07
    CT5X-50/70-SF-120.2310.173 64.402.01363.6275.0519.04
    CT5Y-50/70-SF-120.6310.592167.225.09766.4193.8317.63
    CT6X-50/70-SF-120.1950.157 68.542.02365.1380.4114.71
    CT6Y-50/70-SF-120.4920.476187.295.10266.6496.8216.02
    下载: 导出CSV

    表  3  不同管横截面形状的静态缓冲吸能特性比较

    Table  3.   Comparison of static cushioning energy absorption for different tube cross-section shapes

    试样σy/MPaσb/MPaE/Jea/(J·g−1)Δs/%ηcf/%ηt/kg−1
    CT4X-35/77-SF-120.2730.227 24.411.21956.4683.1521.41
    CT5X-35/77-SF-120.3010.286 47.911.88859.7994.9523.35
    CT6X-35/77-SF-120.2510.197 58.742.12765.2778.6420.02
    CT4Y-35/77-SF-120.6930.642 77.843.75461.7392.6425.38
    CT5Y-35/77-SF-120.9500.850141.445.60266.2589.4621.98
    CT6Y-35/77-SF-120.7210.646180.736.61071.1689.5421.62
    下载: 导出CSV

    表  4  不同管长比的静态缓冲吸能特性比较

    Table  4.   Comparison of static cushioning energy absorption for different tube length ratios

    l2/l1试样σy/MPaσb/MPaE/Jea/(J·g−1)Δs/%ηcf/%ηt/kg−1
    1.4CT4X-35/49-SF-120.3860.273 18.321.48062.6170.7328.88
    2.2CT4X-35/77-SF-120.2730.227 24.411.21956.4683.1521.41
    3.0CT4X-35/105-SF-120.3800.298 48.921.82562.3278.4216.88
    1.4CT4Y-35/49-SF-120.7290.674 51.073.81462.7592.4638.52
    2.2CT4Y-35/77-SF-120.6930.642 77.843.75461.7392.6425.38
    3.0CT4Y-35/105-SF-120.6420.620108.903.85764.6396.5720.64
    下载: 导出CSV

    表  5  跌落冲击响应结果

    Table  5.   Results of drop impact responses

    冲击条件CT5X-50/70-SFCT5Y-50/70-SFCT5X-50/110-SFCT5Y-50/110-SFCT5X-50/150-SFCT5Y-50/150-SF
    amax/gt/msamax/gt/msamax/gt/msamax/gt/msamax/gt/msamax/gt/ms
    H1/M118.8531.2052.9413.4016.5720.8050.3710.2017.3026.4049.14 8.30
    H1/M217.4534.8043.9014.7516.7138.0041.0714.5114.5126.0043.03 9.00
    H1/M314.8738.0041.4513.6015.3241.5039.5211.4013.5627.4042.9910.00
    H1/M412.9745.0039.2813.6016.2436.0037.7312.5010.5844.0039.4613.48
    H2/M117.8936.2051.0911.8020.2938.1049.5311.7019.4128.0450.76 8.30
    H2/M217.2347.5049.0513.7514.6048.5044.5812.2517.3135.1840.80 8.00
    H2/M316.3653.0033.4518.2013.7249.5040.8015.0013.1539.6042.9912.30
    H2/M415.2855.0040.4520.2012.5861.0036.0516.8011.5858.0731.2415.80
    H3/M120.8845.0248.0811.4818.3537.9949.98 9.3919.7632.7548.0611.54
    H3/M223.0642.9845.0112.9515.9142.9648.0512.8916.8634.9539.6710.52
    H3/M329.0544.8541.1616.2115.4452.0241.2614.2516.3248.4644.9613.27
    H3/M413.4540.8533.9119.3113.5262.8733.9721.7913.3158.2133.0517.32
    下载: 导出CSV

    表  6  不同管方向的跌落冲击缓冲吸能特性比较

    Table  6.   Comparison of cushioning energy absorption for different tube directions under drop impact

    试样σy/MPaσb/MPaE/Jea/(J·g−1)Δs/%ηcf/%ηt/kg−1
    CT4X-50/110-SF-50/11.2750.3160.25351.471.33344.28 80.068.44
    CT4Y-50/110-SF-50/11.2750.8920.59245.281.12118.25 66.362.49
    CT5X-50/110-SF-50/11.2750.2320.18823.840.48241.72 81.032.89
    CT5Y-50/110-SF-50/11.2750.6890.55617.560.34012.05 80.690.69
    CT6X-50/110-SF-50/11.2750.1400.15026.740.43836.11107.143.14
    CT6Y-50/110-SF-50/11.2750.5560.42924.460.41411.91 77.160.75
    下载: 导出CSV

    表  7  不同管横截面形状的跌落冲击缓冲吸能特性比较

    Table  7.   Comparison of cushioning energy absorption of different tube cross-section shapes under drop impact

    试样σy/MPaσb/MPaE/Jea/(J·g−1)Δs/%ηcf/%ηt/kg−1
    CT4X-50/150-SF-50/11.2750.2860.20651.230.92640.4272.034.75
    CT5X-50/150-SF-50/11.2750.1900.17126.250.43231.7490.012.32
    CT6X-50/150-SF-50/11.2750.1960.13126.230.32826.5366.841.23
    CT4Y-50/150-SF-50/11.2750.6150.41437.540.66813.9667.321.58
    CT5Y-50/150-SF-50/11.2750.7260.50422.450.339 9.5469.420.48
    CT6Y-50/150-SF-50/11.2750.4900.39924.910.296 9.1981.430.44
    下载: 导出CSV

    表  8  不同管长比的跌落冲击缓冲吸能特性比较

    Table  8.   Comparison of cushioning energy absorption for different tube length ratios under drop impact

    l2/l1试样σy/MPaσb/MPaE/Jea/(J·g−1)Δs/%ηcf/%ηt/kg−1
    1.4CT6X-35/49-SF-50/7.0000.2640.18230.151.55664.7275.0121.85
    2.2CT6X-35/77-SF-50/7.0000.1760.16829.461.06748.0592.0514.29
    3.0CT6X-35/105-SF-50/7.0000.2150.15629.180.71435.7872.56 5.74
    1.4CT6Y-35/49-SF-50/7.0000.5950.44928.441.48727.1478.66 9.27
    2.2CT6Y-35/77-SF-50/7.0000.5380.45326.640.97416.4590.71 4.27
    3.0CT6Y-35/105-SF-50/7.0000.6020.46324.370.60612.5576.91 1.74
    下载: 导出CSV

    表  9  不同跌落冲击条件下冲击能量的计算结果

    Table  9.   Calculated impact energies under different drop impact conditions

    冲击条件冲击能量/J冲击条件冲击能量/J冲击条件冲击能量/J冲击条件冲击能量/J
    H1/M120.6H1/M442.8H2/M355.2H3/M262.6
    H1/M226.8H2/M134.3H2/M471.3H3/M377.3
    H1/M333.1H2/M244.7H3/M148.0H3/M499.8
    下载: 导出CSV
  • [1] 邱信明, 潘明乐, 虞晓欢, 等. 不同失效模式下轴压管状结构的吸能特性比较 [J]. 力学与实践, 2016, 38(5): 477–492. DOI: 10.6052/1000-0879-16-243.

    QIU X M, PAN M L, YU X H, et al. Analysis of the energy absorption properties for tubular structure under axial compression of different failure models [J]. Mechanics in Engineering, 2016, 38(5): 477–492. DOI: 10.6052/1000-0879-16-243.
    [2] SUN Y L, LI Q M. Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modeling [J]. International Journal of Impact Engineering, 2018, 112(1): 74–115. DOI: 10.1016/j.ijimpeng.2017.10.006.
    [3] BAROUTAJI A, SAJJIA M, OLABI A. On the crashworthiness performance of thin-walled energy absorbers: recent advances and future developments [J]. Thin-Walled Structures, 2017, 118: 137–163. DOI: 10.1016/j.tws.2017.05.018.
    [4] 高德, 王振林, 陈乃立, 等. B楞双层瓦楞纸板衬垫平压缓冲动态性能建模 [J]. 振动工程学报, 2001, 14(2): 172–178. DOI: 10.3969/j.issn.1004-4523.2001.02.009.

    GAO D, WANG Z L, CHEN N L, et al. The dynamic modeling of flat compression cushioning made up of B-flute double-wall corrugated fiberboard [J]. Journal of Vibration Engineering, 2001, 14(2): 172–178. DOI: 10.3969/j.issn.1004-4523.2001.02.009.
    [5] SEK M, ROUILLARD V, TARASH H, et al. Enhancement of cushioning performance with paperboard crumple inserts [J]. Packaging Technology and Science, 2005, 18(5): 273–278. DOI: 10.1002/pts.698.
    [6] WANG D M. Cushioning properties of multi-layer corrugated sandwich structures [J]. Journal of Sandwich Structures and Materials, 2009, 11(1): 57–66. DOI: 10.1177/1099636208100415.
    [7] WANG Z W, E Y P. Energy absorption properties of multi-layered corrugated paperboard in various ambient humidities [J]. Materials and Design, 2011, 32(6): 3476–3485. DOI: 10.1016/j.matdes.2011.01.059.
    [8] GUO Y F, XU W C, FU Y G, et al. Dynamic shock cushioning characteristics and vibration transmissibility of X-PLY corrugated paperboard [J]. Shock and Vibration, 2011, 18(4): 525–535. DOI: 10.1155/2011/578265.
    [9] CASTIGLIONI A, CASTELLANI L, CUDER G, et al. Relevant materials parameters in cushioning for EPS foams [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 534: 71–77. DOI: 10.1016/j.colsurfa.2017.03.049.
    [10] 王文康, 廖瑜, 王高胜. 聚合物泡沫材料中低应变率压缩力学性能研究 [J]. 合成材料老化与应用, 2018(6): 26–30. DOI: 10.16584/j.cnki.issn1671-5381.2018.06.007.

    WANG W K, LIAO Y, WANG G S. Study on compressive mechanical properties of polymer foams at low and medium strain rates [J]. Synthetic Materials Aging and Application, 2018(6): 26–30. DOI: 10.16584/j.cnki.issn1671-5381.2018.06.007.
    [11] 徐立志, 高光发, 赵真, 等. 不同应变率下聚乙烯材料的压缩力学性能 [J]. 爆炸与冲击, 2019, 39(1): 013301. DOI: 10.11883/bzycj-2017-0266.

    XU L Z, GAO G F, ZHAO Z, et al. Compressive mechanical properties of polyethylene materials at different strain rates [J]. Explosion and Shock Waves, 2019, 39(1): 013301. DOI: 10.11883/bzycj-2017-0266.
    [12] 卢子兴, 陈伟. 泡沫变形模式对泡沫填充圆管压溃行为的影响 [J]. 复合材料学报, 2011, 28(5): 168–173. DOI: 10.13801/j.cnki.fhclxb.2011.05.031.

    LU Z X, CHEN W. Effect of foam deformation modes on crushing behavior of foam filled circular tubes [J]. Acta Materiae Compositae Sinica, 2011, 28(5): 168–173. DOI: 10.13801/j.cnki.fhclxb.2011.05.031.
    [13] HOU S J, LI Q, LONG S Y, et al. Crashworthiness design for foam filled thin-wall structures [J]. Materials and Design, 2009, 30(6): 2024–2032. DOI: 10.1016/j.matdes.2008.08.044.
    [14] 杨智春, 袁潘. 填充泡沫铝的多层铝管动态压溃吸能特性研究 [J]. 振动工程学报, 2012, 25(1): 12–16. DOI: 10.3969/j.issn.1004-4523.2012.01.003.

    YANG Z C, YUAN P. Numerical study on the energy absorption of foam-filled multi-layers aluminum tubes under dynamic axial crushing [J]. Journal of Vibration Engineering, 2012, 25(1): 12–16. DOI: 10.3969/j.issn.1004-4523.2012.01.003.
    [15] NIKNEJAD A, ABEDI M M, LIAGHAT G H, et al. Absorbed energy by foam-filled quadrangle tubes during the crushing process by considering the interaction effects [J]. Archives of Civil and Mechanical Engineering, 2015, 15(2): 376–391. DOI: 10.1016/j.acme.2014.09.005.
    [16] 张平, 马建, 那景新. 波纹管耐撞性的多目标优化 [J]. 振动与冲击, 2015, 34(15): 12–16. DOI: 10.13465/j.cnki. jvs.2015.15.003.

    ZHANG P, MA J, NA J X. Multi-objective optimization for crashworthiness of corrugated tubes [J]. Journal of Vibration and Shock, 2015, 34(15): 12–16. DOI: 10.13465/j.cnki. jvs.2015.15.003.
    [17] LIU Z F, HAO W Q, XIE J M, et al. Axial-impact buckling modes and energy absorption properties of thin-walled corrugated tubes with sinusoidal patterns [J]. Thin-Walled Structures, 2015, 94(1): 410–423. DOI: 10.1016/j.tws.2015.05.002.
    [18] 冯丽娜, 熊健, 郑伟, 等. 复合材料波纹夹层圆柱壳设计及轴压性能 [J]. 复合材料学报, 2016, 33(2): 418–429. DOI: 10.13801/j.cnki.fhclxb.20150612.002.

    FENG L N, XIONG J, ZHENG W, et al. Fabrication and axial compression properties of composite corrugated sandwich cylindrical shells [J]. Acta Materiae Compositae Sinica, 2016, 33(2): 418–429. DOI: 10.13801/j.cnki.fhclxb.20150612.002.
    [19] EYVAZIAN A, TRAN T N, HAMOUDA A M. Experimental and theoretical studies on axially crushed corrugated metal tubes [J]. International Journal of Non-Linear Mechanics, 2018, 101(1): 86–94. DOI: 10.1016/j.ijnonlinmec.2018.02.009.
    [20] SU P B, HAN B, YANG M, et al. Axial compressive collapse of ultralight corrugated sandwich cylindrical shells [J]. Materials and Design, 2018, 160(1): 325–337. DOI: 10.1016/j.matdes.2018.09.034.
    [21] DENG X L, LIU W Y. Experimental and numerical investigation of a novel sandwich sinusoidal lateral corrugated tubular structure under axial compression [J]. International Journal of Mechanical Sciences, 2019, 151(1): 274–287. DOI: 10.1016/j.ijmecsci.2018.11.010.
    [22] MAHBOD M, ASGARI M. Energy absorption analysis of a novel foam-filled corrugated composite tube under axial and oblique loadings [J]. Thin-Walled Structures, 2018, 129(1): 58–73. DOI: 10.1016/j.tws.2018.03.023.
    [23] 康健芬, 郭彦峰, 付云岗, 等. 纸瓦楞管的轴向准静态缓冲吸能特性研究 [J]. 中国造纸学报, 2018, 33(4): 23–30. DOI: 10.11981/j.issn.1000-6842.2018.04.23.

    KANG J F, GUO Y F, FU Y G, et al. Cushioning energy absorption of corrugated paper tubes under axial quasi-static compression [J]. Transactions of China Pulp and Paper, 2018, 33(4): 23–30. DOI: 10.11981/j.issn.1000-6842.2018.04.23.
    [24] EYVAZIAN A, HABIBI M K, HAMOUDA A M, et al. Axial crushing behavior and energy absorption efficiency of corrugated tubes [J]. Materials and Design, 2014, 54: 1028–1038. DOI: 10.1016/j.matdes.2013.09.031.
    [25] 李志斌, 虞吉林, 郑志军, 等. 薄壁管及其泡沫金属填充结构耐撞性的实验研究 [J]. 实验力学, 2012, 27(1): 77–86.

    LI Z B, YU J L, ZHENG Z J, et al. An experimental study on the crashworthiness of thin-walled tubes and their metallic foam-filled structures [J]. Journal of Experimental Mechanics, 2012, 27(1): 77–86.
    [26] 余同希, 邱信明. 冲击动力学 [M]. 北京: 清华大学出版社, 2011: 191–195.

    YU T X, QIU X M. Impact dynamics [M]. Beijing: Tsinghua University Press, 2011: 191–195.
  • 加载中
图(18) / 表(9)
计量
  • 文章访问数:  5135
  • HTML全文浏览量:  1948
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-04
  • 修回日期:  2019-12-04
  • 网络出版日期:  2020-03-25
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回