压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展

胡海波 傅华 李涛 尚海林 文尚刚

胡海波, 傅华, 李涛, 尚海林, 文尚刚. 压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展[J]. 爆炸与冲击, 2020, 40(1): 011401. doi: 10.11883/bzycj-2019-0346
引用本文: 胡海波, 傅华, 李涛, 尚海林, 文尚刚. 压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展[J]. 爆炸与冲击, 2020, 40(1): 011401. doi: 10.11883/bzycj-2019-0346
HU Haibo, FU Hua, LI Tao, SHANG Hailin, WEN Shanggang. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement[J]. Explosion And Shock Waves, 2020, 40(1): 011401. doi: 10.11883/bzycj-2019-0346
Citation: HU Haibo, FU Hua, LI Tao, SHANG Hailin, WEN Shanggang. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement[J]. Explosion And Shock Waves, 2020, 40(1): 011401. doi: 10.11883/bzycj-2019-0346

压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展

doi: 10.11883/bzycj-2019-0346
基金项目: 冲击波物理与爆轰物理重点实验室基金(6142A0305010717,6142A03050105)
详细信息
    作者简介:

    胡海波(1965- ),男,博士,研究员,博士生导师,huhaibo@caep.cn

    通讯作者:

    李 涛(1978- ),男,博士,副研究员,tedleeus@163.com

  • 中图分类号: O354; TJ55

Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement

  • 摘要: 简要概述了国内外同行最近二十多年来对炸药安全性精密物理实验研究认识进展历程,聚焦分析了炸药安全性研究领域一些传统流派在事故反应机理认知和反应行为建模理论方法上的通常误区。本文中还引证了本研究团队近年开展的一组分解实验进行案例点评,对非冲击点火事故反应在装药结构中的传播及反应演化行为的复杂表现背后共同的基本行为机制进行了集中解读。本文中介绍的系列实验从主导机理视角展示了非冲击点火事故演化物理图像的诸多关键细节。对典型密实炸药而言,非冲击点火反应的本质是炸药表面层燃烧反应主体行为,因高压气体产物流动与炸药间隙及基体中裂纹演化耦合,使反应烈度走向呈现极度非线性特征,同时会因主炸药的燃速特性及约束结构的变形、破裂而存在限制,使得密实炸药DDT转化难于在典型装药结构中发生。
  • 图  1  从一端引燃的中强约束下炸药裂缝中气态产物流动、表面燃烧演化过程

    Figure  1.  Convective gaseous products flow along explosive slot and surface combust evolution in middle strength confinement

    图  2  炸药与有机玻璃柱壳间的缝隙中的产物流动情况及实验后的残药状态

    Figure  2.  Convective products flow along seam between HE charges and PMMA tube wall,and explosive residual

    图  3  薄壁柱壳约束下炸药柱的爆燃反应行为演化

    Figure  3.  Deflagration evolution in thin wall tube confinement

    图  4  壳壁带测试开孔的薄壁柱壳约束炸药爆燃反应后的典型残药状态

    Figure  4.  Typical explosive residual after experiment in thin wall tube confinement with diagnostic drills in tube wall

    图  5  厚壁柱壳约束大长度DDT管炸药反应历程特征和柱壳断裂状态

    Figure  5.  Non-shock initiation reaction evolution in thick wall confinement experiment and tube wall fracture

    图  6  点火头从带窗厚壁约束压装炸药中心点火后炸药球外表裂纹演化早期过程图像

    Figure  6.  The crack evolution at the early half after center ignition (20 mm steel wall with PMMA window)

    图  7  点火头从带窗20 mm厚壁约束压装炸药中心点火后壳体速度及约束结构中压力增长历程

    Figure  7.  The pressure and velocity profiles inside confinement of 20 mm steel wall with PMMA window

    图  8  点火头从带窗厚壁约束压装炸药中心点火后,约束结构中炸药裂纹及反应演化进程示意图

    Figure  8.  The crack evolution and reaction growth after center combustion ignition (20 mm steel wall with PMMA window)

    图  9  典型压装炸药在碰撞类事故载荷作用下的变形、破碎特征[42-43]

    Figure  9.  Character of deformation and fragmentation of typical pressed explosive under impact loading[42-43]

    图  10  不同厚度样品炸药在Steven试验中的反应放能特征差别[9]

    Figure  10.  The difference of energy release behavior of explosive in Steven test with varied thickness[9]

  • [1] ASAY B. Shock wave science and technology reference library, Vol. 5: non-shock initiation of explosives [M]. Springer Science & Business Media, 2010: 1−14.
    [2] 胡海波, 郭应文, 傅华, 等. 炸药事故反应烈度转化的主控机制 [J]. 含能材料, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.

    HU H B, GUO Y W, FU H, et al. The dominant mechanisms of reaction violence transition in explosive accidents [J]. Chinese Journal of Energetic Materials, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.
    [3] SHANG H L, YANG J, LI T, et al. Convective burning in confined explosive cracks of HMX-based PBX under non-shock initiation [C] // 16th International Detonation Symposium. Hawaii, 2018.
    [4] 郭应文. 压装PBX反应烈度演化主导机制的实验研究[D]. 四川绵阳: 中国工程物理研究院, 2017.
    [5] HU H, GUO Y, LI T, et al. Reactive behavior of explosive billets in deflagration tube of varied confinements [C] // AIP Conference Proceedings. AIP Publishing, 2018, 1979(1): 150020.
    [6] HU H B, LI T, WEN S G, et al. Experimental study on the reaction evolution of pressed explosives in long thick wall cylinder confinement [C] // XXI Khariton’s Scientific Readings. Sarov, Russia, 2019.
    [7] LI T, GUO Y W, FU H, et al. Reaction cracks and pressurization of a pressed HMX-based PBX under high confinement [C] // 49th International Annual Conference of ICT, 2018.
    [8] LI T, HU H B, QIU T, et al. Experimentas of violent reactions of pressed high explosive in thick wall confinement [C] // XXI Khariton’s Scientific Readings, Sarov, Russia, 2019.
    [9] WEN Y, DAI X, HAN Y, et al. Reaction characteristic for various scale explosive under mild impact [J]. Journal of Energetic Materials, 2014, 32(S1): 41–50. DOI: 10.1080/07370652.2013.820808.
    [10] BAER M R, KIPP M E, SCHMITT R G, et al. Towards assessing the violence of reaction during cookoff of confined energetic materials [R]. Albuquerque, New Mexico, United States: Sandia National Laboratories, 1996.
    [11] NICHOLS III A L, COUCH R, MCCALLEN R C, et al. Modeling thermally driven energetic response of high explosives [C] // Proceedings of 11th International Detonation Symposium, 1998: 862−871.
    [12] REAUGH J E. HERMES: a model to describe deformation, burning, explosion, and detonation [R]. Livermore, California, United States: Lawrence Livermore National Laboratory, 2011.
    [13] 陈朗, 王飞, 伍俊英, 等. 高密度压装炸药燃烧转爆轰研究 [J]. 含能材料, 2011, 19(6): 697–704. DOI: 10.3969/j.issn.1006-9941.2011.06.022.

    CHEN L, WANG F, WU J Y, et al. Investigation of the deflagration to detonation transition in pressed high density explosives [J]. Chinese Journal of Energetic Materials, 2011, 19(6): 697–704. DOI: 10.3969/j.issn.1006-9941.2011.06.022.
    [14] 陈朗, 马欣. 炸药热安全性理论与分析方法[M]. 北京: 国防工业出版社, 2015.
    [15] 薛鸿陆. 爆轰波基础知识 [J]. 爆炸与冲击, 1983, 3(1): 89–96.

    XUE H L. Fundamental knowledge of detonation waves [J]. Explosion and Shock Waves, 1983, 3(1): 89–96.
    [16] ZENIN A, FINJAKOV S. Characteristics of octogen and hexogen combustion: a comparison [C] // 36th International Annual Conference of ICT, 2006.
    [17] MAIENSCHEIN J L, KOERNER J G. Deflagration behavior of PBX 9501 at elevated temperature and pressure [R]. Livermore, California, United States: Lawrence Livermore National Laboratory, 2008.
    [18] 孙承纬, 范宝春, 黄正平, 等. 爆轰术语: GJB 5720-2006[S]. 2006.
    [19] SMILOWITZ L, HENSON B F, ROMERO J J, et al. Thermal explosions: sub-sonic deflagration in PBX 9501 [R]. Los Alamos, New Mexico, United States: Los Alamos National Laboratory, 2011.
    [20] SMILOWITZ L B, HENSON B F. Temperature measurements during sub-sonic thermal explosions [R]. Los Alamos, New Mexico, United States: Los Alamos National Laboratory, 2012.
    [21] 奥尔连科. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011.
    [22] BELYAEV A F, BOBOLEV V K, KOROTKOV A I, et al. Transition from deflagration to detonation in condensed phases [J]. Israel Program for Scientific Translations, Jerulasem, 1975.
    [23] БЕЛЬСКИЙ В М. Механизм инициирования и развития детонации в твердых гетерогенных ВВ [M]. Sarov, 2019.
    [24] ANDREEVSKIKH L A, VAKHMISTROV S A, PRONIN D A, et al. Convective combustion in the slot of an explosive charge [J]. Combustion, Explosion, and Shock Waves, 2015, 51(6): 659–663. DOI: 10.1134/S0010508215060064.
    [25] Hazard assessment tests for non-nuclear munitions: MIL-STD-2105D [S]. Indian Head, MD : Department of Defense, 2011.
    [26] JOHANSSON S R. Clear thinking requires clear concepts and terms (Explosion: disruption of a container. A mechanical term, not chemical) [C] // 含能材料与钝感弹药技术研讨会论文集. 成都, 2014.
    [27] KUO K K, KOVALCIN R L, ACKMAN S J. Convective burning in isolated solid propellant cracks [R]. Government-Industry Data Exchange Program, 1979.
    [28] BERNECKER R. The deflagration-to-detonation transition process for high-energy propellants-a review [J]. AIAA Journal, 1986, 24(1): 82–91. DOI: 10.2514/3.9226.
    [29] MAČEK A. Transition from deflagration to detonation in cast explosives [J]. The Journal of Chemical Physics, 1959, 31(1): 162–167. DOI: 10.1063/1.1730287.
    [30] TARVER C M, GOODALE T C, SHAW R, et al. Deflagration-to-detonation transition studies for two potential isomeric cast primary explosives [C] // Proceeding of the Sixth Symposium (International) on Detonation. White Oak: Office of Naval Research, 1976: 231.
    [31] JACOBS S J. Comment on “deflagration-to-detonation transition studies for two potential isomeric cast primary explosives” [C] // Proceedings of the Sixth Symposium (International) on Detonation. Arlington, VA: Office of Naval Research, 1976: 249.
    [32] ASAY B. Shock wave science and technology reference library, Vol. 5: non-shock initiation of explosives [M]. Springer Science & Business Media, 2010: 483−533.
    [33] BERGHOUT H L, SON S F, ASAY B W. Convective burning in gaps of PBX 9501 [J]. Proceedings of the Combustion Institute, 2000, 28(1): 911–917. DOI: 10.1016/S0082-0784(00)80297-0.
    [34] JACKSON S I, HILL L G. Predicting runaway reaction in a solid explosive containing a single crack [C] // AIP Conference Proceedings, 2007, 955(1): 927−930.
    [35] HOLMES M D, PARKER Jr G R, HEATWOLE E M, et al. Center-ignited spherical-mass explosion (CISME); FY 2018 report [R]. Los Alamos, New Mexico, United States: Los Alamos National Laboratory, 2018.
    [36] HOLMES M D, PARKER Jr G R, HEATWOLE E M, et al. Fracture effects on explosive response (FEER); FY2018 report [R]. Los Alamos, New Mexico, United States : Los Alamos National Laboratory, 2018.
    [37] 文尚刚. 炸药缝隙中燃烧模式转化及反应烈度增长行为研究[R]. 四川绵阳: 中国工程物理研究院, 2017.
    [38] DAI X G, WEN Y S, HUANG F L, et al. Effect of temperature, density and confinement on deflagration to detonation transition of an HMX‐based explosive [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4): 563–567. DOI: 10.1002/prep.201300112.
    [39] 王建, 文尚刚. 以HMX为基的两种压装高密度炸药的燃烧转爆轰实验研究 [J]. 高压物理学报, 2009, 23(6): 441–446. DOI: 10.3969/j.issn.1000-5773.2009.06.007.

    WANG J, WEN S G. Experimental study on deflagration-to-detonation transition in two pressed high-density explosives [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 441–446. DOI: 10.3969/j.issn.1000-5773.2009.06.007.
    [40] 王建, 文尚刚, 何智, 等. 压装高能炸药的燃烧转爆轰实验研究 [J]. 火炸药学报, 2009, 32(5): 25–28. DOI: 10.3969/j.issn.1007-7812.2009.05.008.

    WANG J, WEN S G, HE Z, et al. Experimental study on deflagration to detonation transition in pressed high density explosives [J]. Chinese Journal of Explosives and Propellants, 2009, 32(5): 25–28. DOI: 10.3969/j.issn.1007-7812.2009.05.008.
    [41] 代晓淦, 申春迎, 文玉史. 模拟跌落撞击下PBX-2炸药的响应 [J]. 含能材料, 2011, 19(2): 209–212. DOI: 10.3969/j.issn.1006-9941.2011.02.019.

    DAI X G, SHEN C Y, WEN Y S. Reaction of PBX-2 explosive under simulated drop impact [J]. Chinese Journal of Energetic Materials, 2011, 19(2): 209–212. DOI: 10.3969/j.issn.1006-9941.2011.02.019.
    [42] 李涛. 低幅值冲击条件下带壳炸药反应烈度的研究[D]. 四川绵阳: 中国工程物理研究院, 2003.
    [43] 李克武, 尚海林, 胡秋实, 等. 针对PBX炸药的SHPB实验方法改进与结果解读[C] // 第十四届全国物理力学学术会议缩编文集. 四川绵阳, 2016.
  • 加载中
图(10)
计量
  • 文章访问数:  6143
  • HTML全文浏览量:  1754
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-04
  • 修回日期:  2019-10-17
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回