高压下PBX-1炸药的燃速-压力特性

姚奎光 赵学峰 樊星 薛鹏伊 代晓淦

姚奎光, 赵学峰, 樊星, 薛鹏伊, 代晓淦. 高压下PBX-1炸药的燃速-压力特性[J]. 爆炸与冲击, 2020, 40(1): 011404. doi: 10.11883/bzycj-2019-0347
引用本文: 姚奎光, 赵学峰, 樊星, 薛鹏伊, 代晓淦. 高压下PBX-1炸药的燃速-压力特性[J]. 爆炸与冲击, 2020, 40(1): 011404. doi: 10.11883/bzycj-2019-0347
YAO Kuiguang, ZHAO Xuefeng, FAN Xing, XUE Pengyi, DAI Xiaogan. Burn rate-pressure characteristic for PBX-1 explosive at high pressures[J]. Explosion And Shock Waves, 2020, 40(1): 011404. doi: 10.11883/bzycj-2019-0347
Citation: YAO Kuiguang, ZHAO Xuefeng, FAN Xing, XUE Pengyi, DAI Xiaogan. Burn rate-pressure characteristic for PBX-1 explosive at high pressures[J]. Explosion And Shock Waves, 2020, 40(1): 011404. doi: 10.11883/bzycj-2019-0347

高压下PBX-1炸药的燃速-压力特性

doi: 10.11883/bzycj-2019-0347
基金项目: 国家自然科学基金(11702266)
详细信息
    作者简介:

    姚奎光(1987- ),男,硕士,助理研究员,yaokg@caep.cn

    通讯作者:

    代晓淦(1978- ),男,博士,副研究员,zhangy2005767@sina.com

  • 中图分类号: O389

Burn rate-pressure characteristic for PBX-1 explosive at high pressures

  • 摘要: 炸药燃速-压力特性是弹药安全性的关键内因,反映了炸药反应烈度增长的倾向性。为了认识PBX-1炸药在未损伤状态下的燃烧特性,发展了密闭空腔燃烧压力-炸药耗量法以及炸药燃烧速率测试方法,并对PBX-1炸药开展了燃烧实验。采用压力传感器测量了密闭燃烧器内部的压力历程,采用快速响应热电偶监测了炸药燃烧阵面时间-位置数据,获得了炸药燃烧速率并拟合出常温下PBX-1炸药热传导燃烧速率与压力的依赖关系r=(2.16±0.55)p1.08±0.06。结果表明,PBX-1炸药的压力指数大于1,燃烧速率对压力变化比较敏感,在100 MPa压力范围内燃烧速率呈指数关系,当压力超过100 MPa后燃烧变得不稳定,燃烧速率迅速增加,导致燃烧器内压力骤变。分析其主要原因是,高压下PBX-1炸药发生物理破坏,炸药燃烧比表面积增加100多倍,炸药反应烈度有经对流燃烧机制提升的趋势。
  • 图  1  实验系统示意图

    Figure  1.  Illustration of experimental system

    图  2  密闭燃烧器结构示意图

    Figure  2.  Schematic diagram of the structure of closed bomb

    图  3  实验样品照片

    Figure  3.  Picture of sample

    图  4  不同压力下燃烧火焰阵面位置-时间数据曲线

    Figure  4.  Flame-front time-of-arrival signals at different pressure

    图  5  几种HMX含量为95%的PBX炸药的燃速-压力特性

    Figure  5.  Burn rate-pressure characteristic for several 95%HMX-based PBXs

    图  6  PBX-1炸药燃烧速率随压力变化曲线

    Figure  6.  Burn rate data for PBX-1 at different pressure

    图  7  PBX-1炸药燃烧比表面积变化情况

    Figure  7.  Normalized burning surface area of PBX-1 at different pressures

    表  1  常温下PBX-1炸药燃烧时间和燃烧速率数据

    Table  1.   Burn time and rate of PBX-1 at ambient temperature

    炸药柱序号234567
    燃烧时间/s0.254 180.102 690.045 900.028 210.018 450.000 52
    平均燃速/(mm·s−1)31.47477.904174.192283.587433.60415 384.600
    下载: 导出CSV
  • [1] TARVER C M, MCGUIRE R R, WRENN E W, et al. Thermal decomposition of explosives with full containment in one-dimensional geometries [C] // Paper presented at 17th International Symposium on Combustion. England, 1978.
    [2] WILLIAMS M R, MATEI M V. The decomposition of some RDX and HMX based materials in the one-dimensional time to explosion apparatus. part 1. time to explosion and apparent activation energy [J]. Propellants, Explosives, Pyrotechnics, 2006, 31(6): 435–441. DOI: 10.1002/prep.200600058.
    [3] JAN H E. Slow heating, munitions test procedures: NATO STANAG 4382 [S]. Brussels: NATO Standardization Agency, 2003: 1−6.
    [4] 代晓淦, 黄毅民, 吕子剑, 等. 不同升温速率热作用下PBX-2炸药的响应规律 [J]. 含能材料, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.

    DAI X G, HUANG Y M, LYU Z J, et al. Reaction behavior for PBX-2 explosive at different Heating rate [J]. Chinese Journal of Energetic Materials, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.
    [5] NAOS J T, KNET L A, GILL W, et al. Fast cook-off testing in enclosed facilities with reduced emissions: SAND-91-0470C [R]. USA: Sandia National Labs, 1991.
    [6] 胡海波, 郭应文, 傅华, 等. 炸药事故反应烈度转化的主控机制 [J]. 含能材料, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.

    HU H B, GUO Y W, FU H, et al. Dominant mechanism affecting reaction violence transition of explosive in accidents [J]. Chinese Journal of Energetic Materials, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.
    [7] 杨荣杰, 李玉平, 刘云飞, 等. 固体推进剂燃烧过程实时监测与燃速测定系统 [J]. 推进技术, 2000, 21(1): 86–88. DOI: 10.3321/j.issn:1001-4055.2000.01.025.

    YANG R J, LI Y P, LIU Y F, et al. Advanced system of monitor and measurement for the combustion process and rate of solid propellants [J]. Journal of Propulsion Technology, 2000, 21(1): 86–88. DOI: 10.3321/j.issn:1001-4055.2000.01.025.
    [8] 温刚, 堵平, 廖昕. 用密闭爆发器法测定发射药实际燃速的原理和方法 [J]. 火炸药学报, 2011, 34(3): 57–60. DOI: 10.3969/j.issn.1007-7812.2011.03.015.

    WEN G, DU P, LIAO X. Principle and method of measuring actual burning rate of propellant by closed bomb [J]. Chinese Journal of Explosives & Propellants, 2011, 34(3): 57–60. DOI: 10.3969/j.issn.1007-7812.2011.03.015.
    [9] 胡松启, 邓哲, 刘迎吉. 复合推进剂应变条件下燃速变化的实验研究 [J]. 固体火箭技术, 2013, 36(2): 230–233.

    HU S Q, DENG Z, LIU Y J. Experimental research on burning rate change of composite propellant under strain [J]. Journal of Solid Rocket Technology, 2013, 36(2): 230–233.
    [10] COOPER M A, OLIVER M S. The burning regimes and conductive burn rates of titanium subhydride potassium perchlorate (TiH1.65/KClO4) in hybrid closed bomb-strand burner experiments [J]. Combustion and Flame, 2013, 160: 2619–2630. DOI: 10.1016/j.combustflame.2013.05.015.
    [11] MAIENSCHEIN J L, WARDELL J F, DEHAVEN M R, et al. Deflagration of HMX based explosives at high temperatures and pressures [J]. Propellants, Explosives, Pyrotechnics, 2004, 29: 287–295. DOI: 10.1002/prep.200400061.
    [12] GLASCOE E A, SPRINGER H K, TRINGE J, et al. A comparison of deflagration rates at elevated pressures and temperatures with thermal explosion results [C] // Shock Compression of Condensed Matter, American Institute Physics, 2011.
    [13] MAIENSCHEIN J L, WARDELL J F. Deflagration behavior of HMX-based explosives at high temperatures and pressures [C] // JANNAF 21st Propulsion Systems Hazards Subcommittee Meeting. Colorado Springs, CO, United States, 2003.
    [14] GLASCOE E A, MAIENSCHEIN J L, BURNHAM A K, et al. PBXN-9 ignition kinetics and deflagration rates [C] // 55th JANNAF Propulsion Meeting. Newton, MA, United States, 2008.
    [15] KOERNER J, MAIENSCHEIN J L, BLACK K, et al. LX-17 deflagration at high pressures and temperatures [C] // 23rd Propulsion Systems Hazards Joint Subcommittee Meeting. San Diego, CA, United States, 2006.
    [16] ASAY B. Shock wave science and technology reference library, Vo. 5: non-shock initiation of explosives [M]. Springer Science & Business Media, 2010.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  6064
  • HTML全文浏览量:  1519
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-06
  • 修回日期:  2019-11-19
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回