Burn rate-pressure characteristic for PBX-1 explosive at high pressures
-
摘要: 炸药燃速-压力特性是弹药安全性的关键内因,反映了炸药反应烈度增长的倾向性。为了认识PBX-1炸药在未损伤状态下的燃烧特性,发展了密闭空腔燃烧压力-炸药耗量法以及炸药燃烧速率测试方法,并对PBX-1炸药开展了燃烧实验。采用压力传感器测量了密闭燃烧器内部的压力历程,采用快速响应热电偶监测了炸药燃烧阵面时间-位置数据,获得了炸药燃烧速率并拟合出常温下PBX-1炸药热传导燃烧速率与压力的依赖关系r=(2.16±0.55)p1.08±0.06。结果表明,PBX-1炸药的压力指数大于1,燃烧速率对压力变化比较敏感,在100 MPa压力范围内燃烧速率呈指数关系,当压力超过100 MPa后燃烧变得不稳定,燃烧速率迅速增加,导致燃烧器内压力骤变。分析其主要原因是,高压下PBX-1炸药发生物理破坏,炸药燃烧比表面积增加100多倍,炸药反应烈度有经对流燃烧机制提升的趋势。Abstract: The burn rate-pressure characteristic of explosive is the intrinsic factor of ammunition safety, which reflects the potential tendency of the development of reaction violence. We conducted the experiment to understand the deflagration behavior of PBX-1 explosive by using the method of burn pressure-burn consumption in a closed bomb. The temporal pressure data and burn front time-of-arrival data were respectively recorded by pressure transducer and microthermocouple, allowing direct calculation of burn rate as a function of pressure. The result shows that the burn rate equation of PBX-1 explosive can be expressed as r = (2.16±0.55) p1.08±0.06 with the pressure exponent n>1, indicating that the burn rate is sensitive to pressure. Over the pressure range 10−100 MPa the burn rate displays exponent dependence on the pressure. In contrast, PBX-1 exhibits erratic burn behaviors with pressures grater than 100 MPa and burn rate rises sharply. The analysis demonstrates that the physical deconsolidation of PBX-1 explosive at high pressure is the main factor, which physically disrupts the sample and results in burn specific surface area increasing over 100 times. PBX-1 explosive has potential tendency of enhancing the reaction violence by convective burning mechanism.
-
Key words:
- explosive /
- burn rate /
- pressure /
- specific surface area
-
表 1 常温下PBX-1炸药燃烧时间和燃烧速率数据
Table 1. Burn time and rate of PBX-1 at ambient temperature
炸药柱序号 2 3 4 5 6 7 燃烧时间/s 0.254 18 0.102 69 0.045 90 0.028 21 0.018 45 0.000 52 平均燃速/(mm·s−1) 31.474 77.904 174.192 283.587 433.604 15 384.600 -
[1] TARVER C M, MCGUIRE R R, WRENN E W, et al. Thermal decomposition of explosives with full containment in one-dimensional geometries [C] // Paper presented at 17th International Symposium on Combustion. England, 1978. [2] WILLIAMS M R, MATEI M V. The decomposition of some RDX and HMX based materials in the one-dimensional time to explosion apparatus. part 1. time to explosion and apparent activation energy [J]. Propellants, Explosives, Pyrotechnics, 2006, 31(6): 435–441. DOI: 10.1002/prep.200600058. [3] JAN H E. Slow heating, munitions test procedures: NATO STANAG 4382 [S]. Brussels: NATO Standardization Agency, 2003: 1−6. [4] 代晓淦, 黄毅民, 吕子剑, 等. 不同升温速率热作用下PBX-2炸药的响应规律 [J]. 含能材料, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.DAI X G, HUANG Y M, LYU Z J, et al. Reaction behavior for PBX-2 explosive at different Heating rate [J]. Chinese Journal of Energetic Materials, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010. [5] NAOS J T, KNET L A, GILL W, et al. Fast cook-off testing in enclosed facilities with reduced emissions: SAND-91-0470C [R]. USA: Sandia National Labs, 1991. [6] 胡海波, 郭应文, 傅华, 等. 炸药事故反应烈度转化的主控机制 [J]. 含能材料, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.HU H B, GUO Y W, FU H, et al. Dominant mechanism affecting reaction violence transition of explosive in accidents [J]. Chinese Journal of Energetic Materials, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X. [7] 杨荣杰, 李玉平, 刘云飞, 等. 固体推进剂燃烧过程实时监测与燃速测定系统 [J]. 推进技术, 2000, 21(1): 86–88. DOI: 10.3321/j.issn:1001-4055.2000.01.025.YANG R J, LI Y P, LIU Y F, et al. Advanced system of monitor and measurement for the combustion process and rate of solid propellants [J]. Journal of Propulsion Technology, 2000, 21(1): 86–88. DOI: 10.3321/j.issn:1001-4055.2000.01.025. [8] 温刚, 堵平, 廖昕. 用密闭爆发器法测定发射药实际燃速的原理和方法 [J]. 火炸药学报, 2011, 34(3): 57–60. DOI: 10.3969/j.issn.1007-7812.2011.03.015.WEN G, DU P, LIAO X. Principle and method of measuring actual burning rate of propellant by closed bomb [J]. Chinese Journal of Explosives & Propellants, 2011, 34(3): 57–60. DOI: 10.3969/j.issn.1007-7812.2011.03.015. [9] 胡松启, 邓哲, 刘迎吉. 复合推进剂应变条件下燃速变化的实验研究 [J]. 固体火箭技术, 2013, 36(2): 230–233.HU S Q, DENG Z, LIU Y J. Experimental research on burning rate change of composite propellant under strain [J]. Journal of Solid Rocket Technology, 2013, 36(2): 230–233. [10] COOPER M A, OLIVER M S. The burning regimes and conductive burn rates of titanium subhydride potassium perchlorate (TiH1.65/KClO4) in hybrid closed bomb-strand burner experiments [J]. Combustion and Flame, 2013, 160: 2619–2630. DOI: 10.1016/j.combustflame.2013.05.015. [11] MAIENSCHEIN J L, WARDELL J F, DEHAVEN M R, et al. Deflagration of HMX based explosives at high temperatures and pressures [J]. Propellants, Explosives, Pyrotechnics, 2004, 29: 287–295. DOI: 10.1002/prep.200400061. [12] GLASCOE E A, SPRINGER H K, TRINGE J, et al. A comparison of deflagration rates at elevated pressures and temperatures with thermal explosion results [C] // Shock Compression of Condensed Matter, American Institute Physics, 2011. [13] MAIENSCHEIN J L, WARDELL J F. Deflagration behavior of HMX-based explosives at high temperatures and pressures [C] // JANNAF 21st Propulsion Systems Hazards Subcommittee Meeting. Colorado Springs, CO, United States, 2003. [14] GLASCOE E A, MAIENSCHEIN J L, BURNHAM A K, et al. PBXN-9 ignition kinetics and deflagration rates [C] // 55th JANNAF Propulsion Meeting. Newton, MA, United States, 2008. [15] KOERNER J, MAIENSCHEIN J L, BLACK K, et al. LX-17 deflagration at high pressures and temperatures [C] // 23rd Propulsion Systems Hazards Joint Subcommittee Meeting. San Diego, CA, United States, 2006. [16] ASAY B. Shock wave science and technology reference library, Vo. 5: non-shock initiation of explosives [M]. Springer Science & Business Media, 2010.