强约束球形装药反应裂纹传播和反应烈度表征实验

李涛 胡海波 尚海林 傅华 文尚刚 喻虹

李涛, 胡海波, 尚海林, 傅华, 文尚刚, 喻虹. 强约束球形装药反应裂纹传播和反应烈度表征实验[J]. 爆炸与冲击, 2020, 40(1): 011402. doi: 10.11883/bzycj-2019-0348
引用本文: 李涛, 胡海波, 尚海林, 傅华, 文尚刚, 喻虹. 强约束球形装药反应裂纹传播和反应烈度表征实验[J]. 爆炸与冲击, 2020, 40(1): 011402. doi: 10.11883/bzycj-2019-0348
LI Tao, HU Haibo, SHANG Hailin, FU Hua, WEN Shanggang, YU Hong. Propagation of reactive cracks and characterization of reaction violence in spherical charge under strong confinement[J]. Explosion And Shock Waves, 2020, 40(1): 011402. doi: 10.11883/bzycj-2019-0348
Citation: LI Tao, HU Haibo, SHANG Hailin, FU Hua, WEN Shanggang, YU Hong. Propagation of reactive cracks and characterization of reaction violence in spherical charge under strong confinement[J]. Explosion And Shock Waves, 2020, 40(1): 011402. doi: 10.11883/bzycj-2019-0348

强约束球形装药反应裂纹传播和反应烈度表征实验

doi: 10.11883/bzycj-2019-0348
基金项目: 国家自然科学基金(11702273,11802288,11802283);冲击波物理与爆轰物理重点实验室基金(6142A0305010717,6142A03050105,JCKYS2018212010)
详细信息
    作者简介:

    李 涛(1978- ),男,副研究员,tedleeus@163.com

  • 中图分类号: O381; TJ55

Propagation of reactive cracks and characterization of reaction violence in spherical charge under strong confinement

  • 摘要: 炸药燃烧的高温高压气体产物可以进入基体裂纹中引发炸药表面热传导燃烧,形成所谓的对流燃烧。在一定约束条件下,不断上升的气体压力反过来又使炸药基体产生更多的裂纹,为对流燃烧提供更多的通道和燃烧表面积,快速生成大量产物气体导致高烈度反应现象的产生。本文中设计了一种新型强约束球形装药中心点火实验,针对一种HMX为基的PBX炸药,对高烈度反应条件下燃烧裂纹传播和反应增长过程进行了观测,实验中采用测得的反应压力和壳体速度历程对反应烈度进行了量化表征。在带窗口结构中,早期炸药中的燃烧裂纹不可见;中期燃烧裂纹扩展到药球表面时,先形成4条沿经线方向近似对称的主裂纹,随后环向贯通并扩展到整个药球表面;最后的剧烈反应造成强烈发光。上述反应演化经历低压增长阶段约为100 μs,之后伴随着壳体变形膨胀产生剧烈的反应,此时产物压力在约10 μs时间内超过1 GPa,并形成约20%相对于裸炸药爆轰的超压输出。在全钢结构中,20 mm厚的壳体膨胀速度最大可达到500 m/s,此时壳体完全破裂。
  • 图  1  带窗口强约束球形装药实验装置及其测试布局示意图

    Figure  1.  Schematic representation of experimental setup and diagnostic arrangement of spherical charge under strong confinement with optical window

    图  2  全钢结构强约束球形装药实验装置及其测试布局示意图

    Figure  2.  Schematic representation of experimental setup and diagnostic arrangement of spherical charge under full steel confinement without optical window

    图  3  带窗口实验装置反应裂纹完整演化过程高速摄影图像(幅频18 000 s−1

    Figure  3.  High-speed photos of full evolution process of reactive crack system in the experiment with PMMA window (frame rate of 18 000 s−1)

    图  4  反应裂纹扩展演化早期阶段II高速摄影图像(幅频18 000 s−1

    Figure  4.  High-speed photos of the crack propagation at the early half of stage II (frame rate of 18 000 s−1)

    图  5  全钢结构实验装置壳体破裂反应发光过程高速摄影图像(幅频18 000 s−1

    Figure  5.  High-speed photos of full evolution process of case rupture and reaction illumination in the experiment with steel shell (frame rate of 18 000 s−1)

    图  6  带窗口实验装置壳体速度和内部压力历程

    Figure  6.  Pressure inside confinement and velocity profiles in experiment with window

    图  7  全钢结构实验装置壳体速度和内部压力历程

    Figure  7.  Velocity profiles and pressure inside confinement without window

    图  8  全钢结构实验回收壳体碎块残骸

    Figure  8.  Recovery fragments of full steel confinement in second experiment

    图  9  带窗口和全钢结构实验中测得的空气冲击波超压波形

    Figure  9.  The air blast overpressure measured in the experiment with and without window

    图  10  约束装药内部反应裂纹的早期和后期演化图像

    Figure  10.  The early and late stage evolution of reactive cracks inside explosive bulk under confinement

  • [1] ASAY B. Shock wave science and technology reference library, Vol. 5: Non-shock initiation of explosives [M]. Springer Science & Business Media, 2010: 245−292.
    [2] JACKSON S I, HILL L G. Predicting runaway reaction in a solid explosive containing a single crack [C] // AIP Conference Proceed-ings, 2007, 955(1): 927−930.
    [3] ANDREEVSKIKH L A, VAKHMISTROV S A, PRONIN D A, et al. Convective combustion in the slot of an explosive charge [J]. Combustion, Explosion, and Shock Waves, 2015, 51(6): 659–663. DOI: 10.1134/S0010508215060064.
    [4] DYER A S, TAYLOR J W. Initiation of detonation by friction on a high explosive charge [C] // 5th Symposium (International) on Detonation. ONR, 1970: 291−300.
    [5] IDAR D J, LUCHT R A, SCAMMON R, et al. PBX 9501 high explosive violent response/low amplitude insult project: Phase I [R]. Los Alamos National Laboratory. New Mexico, United States, 1997.
    [6] ASAY B W, SON S F, BDZIL J B. The role of gas permeation in convective burning [J]. International Journal of Multiphase Flow, 1996, 22(5): 923–952. DOI: 10.1016/0301-9322(96)00041-9.
    [7] DICKSON P M, ASAY B W, HENSON B F, et al. Observation of the behaviour of confined PBX 9501 following a simulated cook-off ignition [R]. Los Alamos National Laboratory. Los Alamos, New Mexico, United States, 1998.
    [8] SMILOWITZ L, HENSON B F, ROMERO J J, et al. Direct observation of the phenomenology of a solid thermal explosion using time-resolved proton radiography [J]. Physical Review Letters, 2008, 100(22): 228301. DOI: 10.1103/PhysRevLett.100.228301.
    [9] 北京工业学院八系. 爆炸及其作用(下册) [M]. 北京: 国防工业出版社, 1979.
    [10] SHANG H L, YANG J, LI T, et al. Convective burning in confined explosive cracks of HMX-based PBX under non-shock initia-tion [C] // 16th International Detonation Symposium, 2018.
    [11] HOLMES M D, PARKER Jr G R, HEATWOLE E M, et al. Center-ignited spherical-mass explosion (CISME); FY 2018 Report [R]. Los Alamos National Laboratory, Los Alamos, New Mexico, United States, 2018.
    [12] HOLMES M D, PARKER JR G R, HEATWOLE E M, et al. Fracture effects on explosive response (FEER); FY2018 Report [R]. Los Alamos National Laboratory, Los Alamos, New Mexico, United States, 2018.
    [13] HU H B, LI T, WEN S G, et al. Experimental study on the reaction evolution of pressed explosives in long thick wall cylinder con-finement [C] // XXI Khariton’s Scientific Readings. Sarov, Russia, 2019.
    [14] MAČEK A. Transition from deflagration to detonation in cast explosives [J]. The Journal of Chemical Physics, 1959, 31(1): 162–167. DOI: 10.1063/1.1730287.
  • 加载中
图(10)
计量
  • 文章访问数:  5779
  • HTML全文浏览量:  1494
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 修回日期:  2019-10-17
  • 网络出版日期:  2019-11-25
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回